

Pushing the precision and sensitivity frontier: β-decay studies at TRIUMF-ISAC

Paul E. Garrett University of Guelph

09/05/2015

Physics at SPES with non re-accelerated beams

γ -ray spectroscopy studies with β -decay at TRIUMF-ISAC

- Three general themes
 - Studies related to *fundamental symmetries*, e.g.
 superallowed Fermi β decay, characterized by *high-precision* measurements
 - ¹⁰C, ¹⁴O, ¹⁸Ne, ¹⁹Ne, ²⁶Al^m, ³⁸K^m, ⁶²Ga, ⁷⁴Rb
 - Requires DAQ that has a high degree of diagnostics, records pileup, deadtime, etc.
 - Studies related to nuclei *far from stability*, characterized
 by *weak beams* and *low rates*
 - e.g. ³²Na, ^{50,52}Ca, ¹⁰²Rb
 - Requires high-efficiency detectors
 - Studies related to nuclei *on or near stability*,
 characterized by *intense beams* and *high rates*
 - e.g. ⁹⁴Y, ^{110,112}In/Ag, ^{122,124,126}Cs, ¹⁵⁶Ho, ¹⁵⁸Tm

Nuclear structure studies with β -decay at TRIUMF-ISAC

- 8π spectrometer was the workhorse for γ -ray spectroscopy following β -decay from 2002 2013
 - Arguably the best of the second-generation arrays constructed in the 1980's
 - Still producing world-leading results despite HPGe obsolesce, array was *dedicated and optimized* for β-decay studies and combined with beams from TRIUMF-ISAC, achieved world-leading sensitivity

New era: GRIFFIN at ISAC

 Combining the best of high efficiency and high data throughput to provide detailed spectroscopy for both near-to and far-from stability studies

The 8π (now decommissioned) spectrometer

The 8π spectrometer was a world unique device for β decay studies. Simultaneous collection of γ -singles, $\gamma\gamma$ coincidences, β tagging, conversion electrons, and lifetime measurements

High-statistics ¹²⁴Cs β -decay Beam: 9.8×10⁷ ions/s ¹²⁴Cs (J^{π}=1⁺, $t_{1/2}$ =30.8s) and 2.6×10⁶ ions/s ¹²⁴Cs^m (J^{π}=(7)⁺, $t_{1/2}$ =6.3s)

Studies on or near stability can take advantage of complementary information

INIVERSITY

Exploration of nature of highly-excited non-yrast states requires extreme sensitivity

ERSITY

With high statistics, detailed spectroscopy follows...

• Partial level scheme from ¹¹⁰In β^+ /EC decay to ¹¹⁰Cd

 In some cases, observe or place stringent limits on *all* possible decays from excited states allowing details tests of models

Moving tape collector for transport of activity

- Beam implanted onto a moving tape at center of array
 - Allows for movement of long-lived activity out of focus of spectrometer
- Tape speeds, dwell times, etc., variable
- Control of beam kicker tightly coupled beam collection time variable (down to ~ 100ms)
- Tape transport very flexible: can be motionless, or operated in continuous motion
- Disadvantage: study of long-lived activity in presence of intense, short-lived isobar

Built by E. Zganjar, LSU

High spin states fed in ¹²⁴Cs decay

How does the 1⁺ parent populate the 6⁺ member of the daughter gsb? 09/05/2015 Physics at SPES with non re-accelerated beams

It doesn't!

¹²⁴Cs^m decay – unknown β branch identified via half life

Counts observed in photopeak C(t)

SCEPTAR – plastic scintillator array for tagging on β particles

 1-to-1 correspondence between the SCEPTAR detectors and the Ge detectors allows to veto event that arises from high-energy β particles that reach Ge detector

- SCEPTAR divided into two hemispheres.
- Each half contains 10 thin (~1.6 mm) plastic scintillator panels.
- 10 panels arranged in two pentagonal rings.

8π experiment to examine ³²Na decay

- ³²Na decay investigated as a means to study the excited nuclear states of ³²Mg (Z=12, N=20).
- Investigate the breakdown of shell closures far from stability.
- β - γ coincidences measured with 8π and SCEPTAR.
- Reduce background and allow weak ³²Na decay spectrum to be measured. (³²Na beam rate at ~2 ions/s).

PACES – 5 Si(Li) detectors inside target chamber for conversion electron detection

E. Zganjar, LSU

Importance of conversion electron spectroscopy – ¹²⁴Cs^m isomer decay

09/05/2015

Disadvantage of Si geometry inside focal UNIVERSITY **CUELPH VOLUME of Ge array**

Coincident events in Si detectors

Coincident events in Ge detectors

New $E\theta$ in ¹¹⁰Cd transitions through γ -gated e^- spectroscopy

 $ho^{2}(E0)$ dependent on deformation differences and mixing

β-decay at TRIUMF with GRIFFIN

- Phase I (\$8.9M) complete
 - 16 large-volume unsegmented clover detectors (40% crystals 220% with addback)
 - Support structure, new beam line, etc.
 - Digital DAQ triggerless with aim to write 300 MB/s (~1 MHz event rate)
- Commissioned fall 2014

GRIFFIN Efficiency – extending the spectroscopy reach to 1 ion/min

- **Operate in 2 modes**
 - maximum efficiency mode (detectors fully forward, source-to-detector distance 11 cm)
 - full-suppression mode (allow for future BGO shields)

GRIFFIN Phase I – operational

GRIFFIN Phase I – operational

Commissioning experiment to study ¹¹⁵Ag decay ^{or}G^{UELPH} to ¹¹⁵Cd – motivated by abundance of ¹¹⁶Cd

Configuration of GRIFFIN for ³²Na decay: ^{UNIVERSITY} ^{GUELPH} ^{GUELPH}

What we see

What the decay radiation sees

Comparison of 8π and GRIFFIN

γ coincidences with 885-keV 2⁺ \rightarrow 0⁺ in ³²Mg

8π: 2-3 pps, 5 days

GRIFFIN: ~9 pps, ~2 days

C. Mattoon et al., PRC**75**, 017302 (2007)

Note scale!

Physics at SPES with non re-accelerated beams

Current configuration of GRIFFIN with $\bigcup_{\mathcal{G}}$ DESCANT – measurement of β -delayed *n* emitters

GRIFFIN with **DESCANT**

Issues to consider for β-decay spectroscopy

- Balanced programme of *near* and *far* from stability
 - Still much to be learned from studies near stability requirement to firmly establish benchmarks near stability and proper systematics
- Clean beams nearly as important for β decay as in-beam studies

Statistics, statistics, statistics,...

- With the 8π at TRIUMF, we aimed for $10^8 10^9$ events in our $\gamma\gamma$ matrices for near-stability experiments
- GRIFFIN will move us into the realm of 10^{10} events for $\gamma\gamma$, and $\gamma\gamma\gamma$ cubes
- Tape collector with variable beam-spill control is vital
 - Flexibility with deposit either internal or external of array is highly desirable
- High-throughput DAQ
- Measurement of angular correlations
 - Complements e^- for multipolarities, spin sequences
 - Many (perhaps *most*?) previous γ branching ratios wrong
 - Singles problematic, coincidences affected by angular correlations

Issues to consider for β-decay spectroscopy

• Auxiliary detectors to increase range of physics

- Si for conversion e^- for multipolarities, E0 transitions
 - Need LN2 cooling restrictive geometry
 - Si count rates quickly become limiting factor segmentation
 - Place Si outside focal volume of Ge to minimize scattering e.g. BESCA with CARDS at ORNL
- Introduction of fast-timing detectors like LaBr₃
- Neutron detectors for β -delayed *n* emission

β-delayed neutron measurements

- Scattering is a serious issue desirable to have open geometry
- Compromise between coincidence efficiency and scattering

Design of a collection station

- For long-lived implanted sources
 - Spares target chamber from contamination
 - Enables *e*[–] measurements on long-lived activities

Decay spectroscopy programme at TRIUMF is one of its most successful

Collaborators

- University of Guelph
 - J. Bangay, L. Bianco, V. Bildstein, H. Dawkins, G.A. Demand, A. Diaz Varela, A. Finlay, K.L. Green, G.F. Grinyer, D. Jamieson, B. Jigmeddorj, K.G. Leach, A.A. Phillips, A. Raddich, E.T. Rand, M.A. Schumaker, C. Sumithrarachchi, C.E. Svensson, J. Wong
- TRIUMF
 - G.C. Ball, D.S. Bandyopadhyay, P.C. Bender, A. Garnsworthy, G. Hackman, S. Ketelhut, A.C. Morton, J.N. Orce, C.J. Pearson, E. R. Tardiff, S. Triambak, Z.-M. Wang, S. Williams
- Georgia Institute of Technology
 - J.L. Wood
- Oak Ridge National Laboratory
 - M. Allmond
- University of Kentucky
 - A. Chakraborty, E.E. Peters, B.P. Crider, M.T. McEllistrem, F.M. Prados-Estevez, S.W. Yates
- Simon Fraser University
 - C. Andreoiu, D.C. Cross, J. Pore, K. Starosta
- Colorado School of Mines (³²Na decay)
 - R. Braid, S. Ilyushkin, W. Moore, K. Kuhn, F. Sarazin