Light Cone 2015

INFN Frascati National Laboratories September 2/-25, 2015

TMD phenomenology

September 21, 2015

TMDs = exploring the 3D nucleon structure, in momentum space

GPDs = exploring the 3D nucleon structure, in coordinate space (talk by D. Müller)
the nucleon is still a very mysterious object and the most abundant piece of matter in the Universe

simple parton model

TMDs = Transverse Momentum Dependent Parton Distribution Functions (TMD-PDF) or Transverse Momentum Dependent Fragmentation Functions (TMD-FF)

TMD-PDFs give the number density of partons, with their intrinsic motion and spin, inside a fast moving proton, with its spin.

$$
\boldsymbol{S} \cdot\left(\boldsymbol{p} \times \boldsymbol{k}_{\perp}\right) \quad \boldsymbol{s}_{q} \cdot\left(\boldsymbol{p} \times \boldsymbol{k}_{\perp}\right) \quad \boldsymbol{S} \cdot \boldsymbol{s}_{q}
$$

"Sivers effect" "Boer-Mulders effect"

there are 8 independent TMD-PDFs

$f_{1}^{q}\left(x, \boldsymbol{k}^{2}\right) \quad$ unpolarized quarks in unpolarized protons unintegrated unpolarized distribution
$g_{1 L}^{q}\left(x, \boldsymbol{k}_{\perp}^{2}\right) \quad$ correlate $S_{\llcorner }$of quark with $S_{\llcorner }$of proton unintegrated helicity distribution
$h_{1 T}^{q}\left(x, \boldsymbol{k}_{\perp}^{2}\right) \quad \begin{aligned} & \text { correlate ST of quark with } \mathrm{S}_{\text {T }} \text { of proton } \\ & \text { unintegrated transversity distribution }\end{aligned}$ only these survive in the collinear limit
$f_{1 T}^{\perp q}\left(x, \boldsymbol{k}_{\perp}^{2}\right) \quad$ correlate k_{\perp} of quark with $\mathrm{S}_{\text {T }}$ of proton (Sivers) $h_{1}^{\perp q}\left(x, \boldsymbol{k}_{\perp}^{2}\right) \quad$ correlate k_{\perp} and $s_{\text {t }}$ of quark (Boer-Mulders)

$$
g_{1 T}^{\perp q}\left(x, \boldsymbol{k}_{\perp}^{2}\right) \quad h_{1 L}^{\perp q}\left(x, \boldsymbol{k}_{\perp}^{2}\right) \quad h_{1 T}^{\perp q}\left(x, \boldsymbol{k}_{\perp}^{2}\right)
$$

different double-spin correlations

TMD-FFs give the number density of hadrons, with their momentum, originated in the fragmentation of a fast moving parton, with its spin.

$$
\boldsymbol{s}_{q} \cdot\left(\boldsymbol{p}_{q} \times \boldsymbol{p}_{\perp}\right) \quad \text { "Collins effect" }
$$

there are 2 independent TMD-FFs for spinless hadrons

$$
D_{1}^{q}\left(z, \boldsymbol{p}_{\perp}^{2}\right) \quad \begin{gathered}
\text { unpolarized hadrons in unpolarized quarks } \\
\text { unintegrated fragmentation function }
\end{gathered}
$$

$H_{1}^{\perp q}\left(z, \boldsymbol{p}_{\perp}^{2}\right)$ correlate p_{\perp} of hadron with $\mathrm{s}^{\text {T }}$ of quark (Collins)

how to "measure" TMDs?

needs processes which relate physical observables to parton intrinsic motion

> SIDIS
> $\ell N \rightarrow \ell h X$
Drell-Yan processes

$$
p N \rightarrow \ell^{+} \ell^{-} X
$$

a similar diagram for $e^{+} e^{-} \rightarrow h_{1} h_{2} X$ and, possibly, for $p N \rightarrow h X$

The nucleon correlator, in collinear configuration: 3 distribution functions

$$
\begin{aligned}
& \Phi_{i j}(k ; P, S)=\sum_{X} \int \frac{\mathrm{~d}^{3} \boldsymbol{P}_{X}}{(2 \pi)^{3} 2 E_{X}}(2 \pi)^{4} \delta^{4}\left(P-k-P_{X}\right)\langle P S| \bar{\Psi}_{j}(0)|X\rangle\langle X| \Psi_{i}(0)|P S\rangle \\
& =\int \mathrm{d}^{4} \xi e^{i k \cdot \xi}\langle P S| \bar{\Psi}_{j}(0) \Psi_{i}(\xi)|P S\rangle \\
& \Phi(x, S)=\frac{1}{2} \underbrace{f_{1}(x)}_{q}) h_{+}+S_{L} \underbrace{g_{1 L}(x)}_{\Delta q} \gamma^{5} h_{+}+\underset{\Delta_{T} q}{h_{1 T}} i \sigma_{\mu \nu} \gamma^{5} n_{+}^{\mu} S_{T}^{\nu}]
\end{aligned}
$$

TMD-PDFs: the leading-twist correlator, with intrinsic k_{\perp}, contains 8 independent functions

$$
\begin{aligned}
& \Phi\left(x, \boldsymbol{k}_{\perp}\right)=\frac{1}{2}\left[f_{1} h_{+}++\left(f_{1-1}^{\perp}\right) \frac{\epsilon_{\mu \nu \rho \sigma} \gamma^{\mu} n_{+}^{\nu} k_{\perp}^{\rho} S_{T}^{\sigma}}{M}+\left(S_{L}\left(g_{1 L}\right)+\frac{\boldsymbol{k}_{\perp} \cdot \boldsymbol{S}_{T}}{M} g_{g_{1 T}^{\prime}}\right) \gamma^{5} h_{+}\right. \\
& +\bigcap_{1 T} i \sigma_{\mu \nu} \gamma^{5} n_{+}^{\mu} S_{T}^{\nu}+\left(S_{L}\left(h_{1 L}^{\perp}\right)+\frac{\boldsymbol{k}_{\perp} \cdot \boldsymbol{S}_{T}}{M} h_{1 T}^{\perp}\right) \frac{i \sigma_{\mu \nu} \gamma^{5} n_{+}^{\mu} k_{\perp}^{\nu}}{M} \\
& \left.+\left(h_{1}^{\perp}\right) \frac{\sigma_{\mu \nu} k_{\perp}^{\mu} n_{+}^{\nu}}{M}\right]
\end{aligned}
$$

with partonic interpretation

TMDs in SIDIS

$$
\boldsymbol{P}_{T}=\boldsymbol{p}_{\perp}+z \boldsymbol{k}_{\perp}
$$

TMD factorization holds at large Q^{2}, and $P_{T} \approx k_{\perp} \approx \Lambda_{\text {ocD }}$ Two scales: $P_{T} \ll Q^{2}$

(Collins, Soper, Ji, J.P. Ma, Yuan, Qiu, Vogelsang, Collins, Metz...)

$$
\begin{aligned}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \phi} & =F_{U U}+\cos (2 \phi) F_{U U}^{\cos (2 \phi)}+\frac{1}{Q} \cos \phi F_{U U}^{\cos \phi}+\lambda \frac{1}{Q} \sin \phi F_{L U}^{\sin \phi} \\
& +S_{L}\left\{\sin (2 \phi) F_{U L}^{\sin (2 \phi)}+\frac{1}{Q} \sin \phi F_{U L}^{\sin \phi}+\lambda\left[F_{L L}+\frac{1}{Q} \cos \phi F_{L L}^{\cos \phi}\right]\right\} \\
& +S_{T}\left\{\begin{array}{c}
\sin \left(\phi-\phi_{S}\right) F_{U T}^{\sin \left(\phi-\phi_{S}\right)}+\sin \left(\phi+\phi_{S}\right) F_{U T}^{\sin \left(\phi+\phi_{S}\right)}+\sin \left(3 \phi-\phi_{S}\right) F_{U T}^{\sin \left(3 \phi-\phi_{S}\right)} \\
\text { Sollinsers }
\end{array}\right. \\
& +\frac{1}{Q}\left[\sin \left(2 \phi-\phi_{S}\right) F_{U T}^{\sin \left(2 \phi-\phi_{S}\right)}+\sin \phi_{S} F_{U T}^{\sin \phi_{S}}\right] \\
& \left.+\lambda\left[\cos \left(\phi-\phi_{S}\right) F_{L T}^{\cos \left(\phi-\phi_{S}\right)}+\frac{1}{Q}\left(\cos \phi_{S} F_{L T}^{\cos \phi_{S}}+\cos \left(2 \phi-\phi_{S}\right) F_{L T}^{\cos \left(2 \phi-\phi_{S}\right)}\right)\right]\right\}
\end{aligned}
$$

the $F_{S_{B} S_{T}}^{(\cdots)}$ contain the TMDs; plenty of Spin Asymmetries

TMDs in Drell-Yan processes

COMPASS, RHIC, Fermilab, NICA, AFTER...

factorization holds, two scales, M^{2}, and $q_{T} \ll M$

$$
\mathrm{d} \sigma^{D-Y}=\sum_{a} f_{q}\left(x_{1}, \boldsymbol{k}_{\perp 1} ; Q^{2}\right) \otimes f_{\bar{q}}\left(x_{2}, \boldsymbol{k}_{\perp 2} ; Q^{2}\right) \mathrm{d} \hat{\sigma}^{q \bar{q} \rightarrow \ell^{+} \ell^{-}}
$$

direct product of TMDs, no fragmentation process

Case of one polarized nucleon only

$$
\begin{aligned}
\frac{\mathrm{d} \sigma}{\mathrm{~d}^{4} q \mathrm{~d} \Omega}= & \frac{\alpha^{2}}{\Phi q^{2}}\left\{\left(1+\cos ^{2} \theta\right) F_{U}^{1}+\left(1-\cos ^{2} \theta\right) F_{U}^{2}+\sin 2 \theta \cos \phi F_{U}^{\cos \phi}+\sin ^{2} \theta \cos 2 \phi F_{U}^{\cos 2 \phi}\right. \\
+ & S_{L}\left(\sin 2 \theta \sin \phi F_{L}^{\sin \phi}+\sin ^{2} \theta \sin 2 \phi F_{L}^{\sin 2 \phi}\right) \\
+ & S_{T}\left[\left(F_{T}^{\sin \phi_{S}}+\cos ^{2} \theta \tilde{F}_{T}^{\sin \phi_{S}}\right) \sin \phi_{S}+\sin 2 \theta\left(\sin \left(\phi+\phi_{S}\right) F_{T}^{\sin \left(\phi+\phi_{S}\right)}\right.\right. \\
& \left.+\sin \left(\phi-\phi_{S}\right) F_{T}^{\sin \left(\phi-\phi_{S}\right)}\right) \\
+ & \left.\left.\sin ^{2} \theta\left(\sin \left(2 \phi+\phi_{S}\right) F_{T}^{\sin \left(2 \phi+\phi_{S}\right)}+\sin \left(2 \phi-\phi_{S}\right) F_{T}^{\sin \left(2 \phi-\phi_{S}\right)}\right)\right]\right\}
\end{aligned}
$$

Collins-Soper

 frame
Unpolarized cross section already very interesting

$$
\frac{1}{\sigma} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega}=\frac{3}{4 \pi} \frac{1}{\lambda+3}\left(1+\lambda \cos ^{2} \theta+\mu \sin 2 \theta \cos \phi+\frac{\nu}{2} \sin ^{2} \theta \cos 2 \phi\right)
$$

Collins-Soper frame
naive collinear parton model: $\lambda=1 \quad \mu=\nu=0$

Collins function from $e^{+} e^{-}$processes Belle, BaBar, BES-III

$$
\frac{\mathrm{d} \sigma^{e^{+} e^{-} \rightarrow q^{\top} \bar{q}^{\top}}}{\mathrm{d} \cos \theta}=\frac{3 \pi \alpha^{2}}{4 s} e_{q}^{2} \cos ^{2} \theta \quad \frac{\mathrm{~d} \sigma^{e^{+} e^{-} \rightarrow q^{\dagger} \bar{q}^{\uparrow}}}{\mathrm{d} \cos \theta}=\frac{3 \pi \alpha^{2}}{4 s} e_{q}^{2}
$$

$$
\begin{aligned}
& A_{12}\left(z_{1}, z_{2}, \theta, \varphi_{1}+\varphi_{2}\right) \equiv \frac{1}{\langle d \sigma\rangle} \frac{d \sigma^{e^{+} e^{-} \rightarrow h_{1} h_{2} X}}{d z_{1} d z_{2} d \cos \theta d\left(\varphi_{1}+\varphi_{2}\right)} \\
& =1+\frac{1}{4} \frac{\sin ^{2} \theta}{1+\cos ^{2} \theta} \cos \left(\varphi_{1}+\varphi_{2}\right) \times \frac{\sum_{q} e^{2} \sqrt{\left.\Delta^{N} D_{h_{1} / q^{\dagger}}\right)\left(z_{1}\right)\left(\Delta^{N} D_{h_{2} / \bar{q}}\right)}\left(z_{2}\right)}{\sum_{q} e_{q}^{2} D_{h_{1} / q}\left(z_{1}\right) D_{h_{2} / \bar{q}}\left(z_{2}\right)}
\end{aligned}
$$

another similar asymmetry can be measured, Ao

Experimental results:

clear evidence for Sivers and Collins effects from SIDIS data (HERMES, COMPASS, JLab)
(talks by L. Pappalardo, H. Avakian, F. Bradamante, P. Rossi...)

independent evidence for Collins effect from $e^{+} e^{-}$data at Belle, BaBar and BES-III

$$
A_{12}\left(z_{1}, z_{2}\right) \sim \Delta^{N} D_{h_{1} / q^{\uparrow}}\left(z_{1}\right) \otimes \Delta^{N} D_{h_{2} / \bar{q}^{\uparrow}}\left(z_{2}\right)
$$

I. Garzia, arXiv:1201.4678

a similar asymmetry just measured by BES-III (arXiv 1507:06824)

Collins effect clearly observed both in SIDIS and $\mathrm{e}+\mathrm{e}$ - processes, by several Collaborations

TMD extraction from data - first phase (simple parameterisation, no TMD evolution, limited number of parameters, ...) (talks by O. Gonzalez, A. Bacchetta) unpolarised TMDs - fit of SIDIS multiplicities (M.A, Boglione, Gonzalez, Melis, Prokudin, JHEP 1404 (2014) 005)

clear support for a gaussian distribution

$$
\begin{gathered}
\frac{d^{2} n^{h}\left(x_{B}, Q^{2}, z_{h}, P_{T}\right)}{d z_{h} d P_{T}^{2}}=\frac{1}{2 P_{T}} M_{n}^{h}\left(x_{B}, Q^{2}, z_{h}, P_{T}\right)=\frac{\pi \sum_{q} e_{q}^{2} f_{q / p}\left(x_{B}\right) D_{h / q}\left(z_{h}\right)}{\sum_{q} e_{q}^{2} f_{q / p}\left(x_{B}\right)} \frac{e^{-P_{T}^{2} /\left\langle P_{T}^{2}\right\rangle}}{\pi\left\langle P_{T}^{2}\right\rangle} \\
\left\langle P_{T}^{2}\right\rangle=\left\langle p_{\perp}^{2}\right\rangle+z_{h}^{2}\left\langle k_{\perp}^{2}\right\rangle \\
f_{q / p}\left(x, k_{\perp}\right)=f_{q / p}(x) \frac{e^{-k_{\perp}^{2} /\left\langle k_{\perp}^{2}\right\rangle}}{\pi\left\langle k_{\perp}^{2}\right\rangle} \\
D_{h / q}\left(z, p_{\perp}\right)=D_{h / q}(z) \frac{e^{-p_{\perp}^{2} /\left\langle p_{\perp}^{2}\right\rangle}}{\pi\left\langle p_{\perp}^{2}\right\rangle} \\
\left\langle k_{\perp}^{2}\right\rangle=0.57 \quad\left\langle p_{\perp}^{2}\right\rangle=0.12
\end{gathered}
$$

a similar analysis performed by Signori, Bacchetta, Radici, Schnell, JHEP 1311 (2013) 194; it also assumes gaussian behaviour

TMD extraction: transversity and Collins functions - first phase M. A., M. Boglione, U. D'Alesio, S. Melis, F. Murgia, A. Prokudin, PRD 87 (2013) 094019

$$
\begin{aligned}
& \Delta_{T} q\left(x, k_{\perp}\right)=\frac{1}{2} \mathcal{N}_{q}^{T}(x)\left[f_{q / p}(x)+\Delta q(x)\right] \frac{e^{-k_{\perp}^{2} /\left\langle k_{\perp}^{2}\right\rangle_{T}}}{\pi\left\langle k_{\perp}^{2}\right\rangle_{T}} \\
& \Delta^{N} D_{h / q^{\uparrow}}\left(z, p_{\perp}\right)=2 \mathcal{N}_{q}^{C}(z) D_{h / q}(z) h\left(p_{\perp}\right) \frac{e^{-p_{\perp}^{2} /\left\langle p_{\perp}^{2}\right\rangle}}{\pi\left\langle p_{\perp}^{2}\right\rangle}
\end{aligned}
$$

SIDIS and e+e-data, simple parameterization, no TMD evolution, agreement with extraction using di-hadron FF
(recent papers by Bacchetta, Courtoy, Guagnelli, Radici, JHEP 1505 (2015) 123;
Kang, Prokudin, Sun, Yuan, Phys. Rev. D91 (2015) 071501; arXiv:1505.05589)
recent BaBar data on the p_{\perp} dependence of the Collins function (first direct measurement)

gaussian p_{\perp} dependence of Collins functions
(M.A., Boglione, D'Alesio, Gonzalez, Melis, Murgia, Prokudin, in preparation)
extraction of u and d Sivers functions - first phase M.A, M. Boglione, U. D'Alesio, S. Melis, F. Murgia, A. Prokudin (in agreement with several other groups)

$$
x \Delta^{N} f_{q}^{(1)}(x, Q)
$$

$$
\begin{aligned}
& \Delta^{N} f_{q}^{(1)}(x, Q) \\
= & \int d^{2} \boldsymbol{k}_{\perp} \frac{k_{\perp}}{4 M_{p}} \Delta^{N} \widehat{f_{q / p^{\top}}}\left(x, k_{\perp} ; Q\right) \\
= & -f_{1 T}^{\perp(1) q}(x, Q)
\end{aligned}
$$

parameterization of the Sivers function:

$$
\Delta^{N} \widehat{f}_{q / p^{\top}}\left(x, k_{\perp} ; Q\right)=2 \mathcal{N}(x) h\left(k_{\perp}\right) f_{q}(x, Q) \frac{1}{\pi\left\langle k_{\perp}^{2}\right\rangle} e^{-k_{\perp}^{2} /\left\langle k_{\perp}^{2}\right\rangle}
$$

Q^{2} evolution only taken into account in the collinear part (usual PDF)

Sivers effects induces distortions in the parton distribution

$$
\widehat{f}_{q / p^{\uparrow}}\left(x, \boldsymbol{k}_{\perp}, S \hat{\boldsymbol{j}} ; Q\right)=\widehat{f}_{q / p}\left(x, k_{\perp} ; Q\right)-\widehat{f}_{1 T}^{\perp q}\left(x, k_{\perp} ; Q\right) \frac{k_{\perp}^{x}}{M_{p}}
$$

$$
S=0
$$

u quark

$$
\boldsymbol{S}=S \hat{\boldsymbol{j}}
$$

courtesy of Alexei Prokudin

Sivers function and angular momentum

$$
\begin{gathered}
\text { Ji's sum rule } \\
\text { forward limit of GPDs } \\
J^{q}=\frac{1}{2} \int_{0}^{1} d x x[\underbrace{H^{q}(x, 0,0)+}_{\text {usual PDF }}+E^{q}(x, 0,0)]
\end{gathered}
$$

anomalous magnetic moments

$$
\begin{gathered}
\kappa^{p}=\int_{0}^{1} \frac{d x}{3}\left[2 E^{u_{v}}(x, 0,0)-E^{d_{v}}(x, 0,0)-E^{s_{v}}(x, 0,0)\right] \\
\kappa^{n}=\int_{0}^{1} \frac{d x}{3}\left[2 E^{d_{v}}(x, 0,0)-E^{u_{v}}(x, 0,0)-E^{s_{v}}(x, 0,0)\right] \\
\left(E^{q_{v}}=E^{q}-E^{\bar{q}}\right)
\end{gathered}
$$

Sivers function and angular momentum

assume

$$
\begin{aligned}
& f_{1 T}^{\perp(0) a}\left(x ; Q_{L}^{2}\right)=-L(x) E^{a}\left(x, 0,0 ; Q_{L}^{2}\right) \\
& f_{1 T}^{\perp(0) a}(x, Q)=\int d^{2} \boldsymbol{k}_{\perp} \widehat{f}_{1 T}^{\perp a}\left(x, k_{\perp} ; Q\right) \\
& L(x)=\text { lensing function } \\
& \text { (unknown, can be computed in models) }
\end{aligned}
$$

parameterise Sivers and lensing functions
fit SIDIS and magnetic moment data obtain E^{q} and estimate total angular momentum
results at $Q^{2}=4 \mathrm{GeV}^{2}: \mathrm{J}^{u} \approx 0.23, \mathrm{~J}^{q \neq u} \approx 0$ Bacchetta, Radici, PRL 107 (2011) 212001

Talks by C. Lorcé and M. Burkardt for Wigner distribution and orbital angular momentum

TMDs at LHC - linearly polarised gluons in unpolarized protons
 (talks by M. Echevarria, A. Signori)

$$
p\left(P_{A}\right)+p\left(P_{B}\right) \rightarrow H\left(K_{H}\right)+\operatorname{jet}\left(K_{\mathrm{j}}\right)+X
$$

$$
\boldsymbol{K}_{\perp}=\left(\boldsymbol{K}_{H \perp}-\boldsymbol{K}_{\mathbf{j} \perp}\right) / 2 \quad \boldsymbol{q}_{T}=\boldsymbol{K}_{H \perp}+\boldsymbol{K}_{\mathbf{j} \perp}
$$

Boer, Pisano, Phys. Rev. D91 (2015) 7, 074024

Z-boson transverse momentum q_{T} spectrum in pp collisions at the LHC

The small q_{T} region cannot be explained by usual collinear PDF factorization: needs TMD-PDFs Phys. Rev. D85 (2012) 032002

other measured evidence of the Sivers and Collins effects

TMDs and QCD - TMD evolution

 study of the QCD evolution of TMDs and TMD factorisation in rapid developmentCollins-Soper-Sterman resummation - NP B250 (1985) 199
Idilbi, Ji, Ma, Yuan - PL B597, 299 (2004); PR D70 (2004) 074021
Ji, Ma, Yuan - PL B597 (2004) 299; PR. D71 (2005) 034005
Collins, "Foundations of perturbative QCD", Cambridge University Press (2011) Aybat, Rogers, PR D83 (2011) 114042
Aybat, Collins, Qiu, Rogers, PR D85 (2012) 034043
Echevarria, Idilbi, Schafer, Scimemi, arXiv:1208.1281
Echevarria, Idilbi, Scimemi, JHEP 1207 (2012) 002
Aybat, Prokudin, Rogers, PRL 108 (2012) 242003
Anselmino, Boglione, Melis, PR D86 (2012) 014028
Aidala, Field, Gamberg, Rogers, PR D89 (2014) 094002
Echevarria, Idilbi, Kang, Vitev, PR D89 (2014) 074013
Bacchetta, Prokudin, NP B875 (2013) 536
Godbole, Misra, Mukherjee, Raswoot, PR D88 (2013) 014029
Boer, Lorcé, Pisano, Zhou, arXiv:1504.04332 (2015)
Boglione, Gonzalez, Melis, Prokudin, JHEP 1502 (2015) 095
Kang, Prokudin, Sun, Yuan, arXiv:1505.05589

+ many more authors...

different TMD evolution schemes and different implementation within the same scheme

 dedicated workshops, QCD Evolution 2011, 2012, 2013, 2014, 2015see, "Transverse momentum dependent (TMD) parton distribution functions: status and prospects", arXiv: 1507.05267 (from
"Resummation, Evolution, Factorization", Antwerp 2014)

dedicated tools:

TMDlib and TMDplotter: library and plotting tools for transverse-momentum-dependent parton distributions Hautmann, Jung, Kramer, Mulders, Nocera, Rogers, Signori

TMD phenomenology - phase 2
how does gluon emission affect the transverse motion? a few selected results
TMD evolution of up quark Sivers function

$$
x=0.1
$$

Aybat, Collins, Qiu, Rogers, Phys. Rev. D85 (2012) 034043

TMD evolution of up quark Sivers function

Aybat, Collins, Qiu, Rogers, Phys.Rev. D85 (2012) 034043
TMD evolution of Sivers function studied also by Echevarria, Idilbi, Kang, Vitev, Phys. Rev. D89 (2014) 074013

first phenomenological applications to data

Aybat, Prokudin, Rogers, PRL 108 (2012) 242003

existing fits (red line, Torino) of HERMES data at $\left\langle Q^{2}\right\rangle=2.4 \mathrm{GeV}^{2}$, extrapolated with TMD evolution up to $\left\langle Q^{2}\right\rangle=3.8 \mathrm{GeV}^{2}$ and compared with COMPASS data (dashed line)
fit of SIDIS data with a specific TMD evolution M.A., M. Boglione, S. Melis, PR D86 (2012) 014028; arXiv:1204.1239

TMD evolution fits better the large Q^{2} data

Extraction of transversity and Collins functions with TMD evolution (Kang, Prokudin, Sun, Yuan, arXiv:1505.05589)

comparison with phase 1 extraction, $Q^{2}=2.4 \mathrm{GeV}^{2}$
(Kang, Prokudin, Sun, Yuan, arXiv:1505.05589)
(talks by O. Gonzalez, A. Bacchetta)
comparison of tensor charges from different extractions and models, at $Q^{2}=10 \mathrm{GeV}^{2}$

$$
\delta q=\int_{0}^{1} d x\left[\Delta_{T} q(x)-\Delta_{T} \bar{q}(x)\right]
$$

predictions for BES-III $e^{+} e^{-}$Collins asymmetry A_{0} in excellent agreement with data, $Q^{2}=13 \mathrm{GeV}^{2}$ (some difficulties without TMD evolution)
(Kang, Prokudin, Sun, Yuan, arXiv:1505.05589)

Conclusions

Sivers and Collins effects are well established, many transverse spin asymmetries resulting from them.
Sivers function and orbital angular momentum?
Evidence for gaussian k_{\perp} and p_{\perp} dependence of unpolarised TMD-PDFs and TMD-FFs

Gluon TMDs deserve special attention; they might play a role at LHC

Much progress in studies of TMD factorisation and TMD evolution; phenomenological implementation in progress

Combined data from SIDIS, Drell-Yan, e+e-, with theoretical modelling, should lead to a true 3D imaging of the proton
waiting for JLab 12, new COMPASS results, future facilities....
(talks by F. Bradamante, P. Rossi)

