SOX

0

0

0

8 -

(C) (C)

670 1535

1.1

中国

C

1.5

in the second

٢

.

-

Co. 40, 40, 40, 40, 40, 40, 40, 50, 50

1

14

C. P. P.

ALC: NO

1

·0;

3

292

1

3 5

in.

ALL ALL

12

-

ALL A

AD CO CO UNA

11 14 (M. 14)

Can Can

Har West City Vin

.....

11

1 1

Neutrino Telescope 2015

> Th. Lasserre CEA Irfu SPP - APC

*

11

11 22

()) ·

14.2

12

Con the second

and a state

1

120

7 E.

3.19.53

ą.

an an

2.5

8808 8

and the second

3

Ch Ch

The Reactor Anomaly

erc

Th. Lasserre - Neutrino Telescope 2015

The Gallium Anomaly

• ⁷¹Ga + $v_e \rightarrow$ ⁷¹Ge + e⁻

- 4 calibration runs with 20-60 PBq Electron Capture v_e emitters
 - Gallex, <L>=1.9 m
 - ⁵¹Cr, 750 keV
 - Sage, <L>=0.6 m
 - ⁵¹Cr & ³⁷Ar (810 keV)

Deficit observed

- 3σ anomaly
- Supported by new ⁷¹Ga (³He,³H)
 ⁷¹Ge cross section measurement

Active Neutrinos

Adding Sterile Neutrinos

But maybe light v_{R} ? No SM interactions. Mixing with active v' s

erc

 $\mathbf{\hat{v}_{e}}$ disappearance (3+1)

erc

Data consistent with $v_e^{(-)}$ disappearance at L/E≈1 m/MeV

$\overline{\mathbf{v}}_{\mathbf{e}}$ Testing $\overline{\mathbf{v}}_{\mathbf{e}}$ disappearance anomalies

GA & RAA : comparison between data and event prediction

- Search for L, E, L/E pattern (shape only)
- Complement with a <u>rate analysis</u> need for an absolute calibration

• Input from sterile neutrino global fits • $\Delta m_{new}^2 \approx 0.1-10 \text{ eV}^2 \rightarrow L_{osc}(m)=2.5 \frac{E(MeV)}{\Delta m^2(eV^2)} \approx 1-10 \text{ m}$ • $\sin^2(2\theta_{new}) \approx 0.01 - 0.2$

- Experimental specifications
 - $\Delta m_{new}^2 \approx eV^2$: <u>compact source</u> < 1m & <u>vertex resolution</u> << 1m
 - sin²(2θ_{new}) : experiment with <u>few % stat. & syst. uncertainties</u>

v Generator Proposals

Туре	Detection	Background	Isotope	Production	Activity	Projects
ν _e	$\nu_{e} e \rightarrow \nu_{e} e$ $F_{e} e \rightarrow \nu_{e} e$ Radioactivity	⁵¹ Cr	n _{th}	>110 PBq	Sage LENS	
	5% E _{res} 15cm R _{res}	Solar <i>v</i> (irreducible) v generator impurities	0.75 MeV t _{1/2} =26d	in Reactor	>370 PBq	CrSOX (SNO+)
	or		³⁷ Ar 0.8 MeV t _{1/2} =35d	n _{fast} irradiation in Reactor (breeder)	>37 PBq	-
	Radio- chemical				185 PBq	Ricochet
$\overline{\nu}_{e}$	$\overline{ u}_{e}^{} p \rightarrow e^{+} n$ E _{th} =1.8 MeV	reactor ν , geo ν , ν generator impurities	¹⁴⁴ Ce E<3MeV t _{1/2} =285d	spent nuclear fuel reprocessing + Single isotope extraction	3.7-5 PBq	CeLAND CeSOX
	(e† n)				18.5 PBq	Daya-Bay
	5% E _{res} 15cm R _{res}		⁹⁰ Sr ¹⁰⁶ Rh		-	-
	³ H→He e ⁻ ν _e EC/β-decay	Kink search	³ H E<18 keV	Irradiation in reactors	110 GBq	KATRIN (Mare/Echo)

CeSOX:

¹⁴⁴Ce-¹⁴⁴Pr next to Borexino

(Borexino Coll. + CEA)

erc

Antineutrino Source: 144Ce-144Pr

(ITEP N°90 1994, PRL 107, 201801, 2011)

- \overline{v}_e detection: $v_e + p \rightarrow e^+ + n$ (Q \approx 1.8 MeV)
 - large IBD cross section \rightarrow 3.7 PBq activity
 - (e⁺,n) detected in coincidence \rightarrow mitigate backgrounds
- 285. d 144_{Ce} β-<318keV 144_{Pr} ¹⁴⁴Ce-¹⁴⁴Pr 7 mn ß-<913 keV Abundant fission product (5%) 1 % ß-<2301 keV 1 % ¹⁴⁴Ce: long-lived & low-Q_β 2185 keV Enough time to produce, ß- < 2996 keV 0.7 % transport, use 97.9 % 696 ¹⁴⁴Pr: short-lived & high-Q_β keV \overline{v}_{e} -emitter above IBD threshold

144Ce-144Pr v-spectra

erc

Th. Lasserre - Neutrino Telescope 2015

Oscillometry in BOREXINO

Search for an L/E oscillation pattern inside LS target Compare observed to expected v rate (no oscillation)

8.3 m from Bx Center

3.7 PBq ¹⁴⁴Ce-¹⁴⁴Pr Antineutrino Generator (CeANG) Production

CeANG: Specifications

- ß activity (in ¹⁴⁴Ce)
 3.7 PBq
- Extracted from fresh spent nuclear fuel (<2 years cooling)
- Chemical form : CeO₂
- Density : between 4 and 6 g/cm³

erc

- Fitting inside a D:H=15:15 cm double capsule of Special Form of Radioactive Material (ISO 9978 - IAEA regulation)
- Purity requirements
 - Content of any others REE (γ -emitters) \leq 10⁻³ Bq / Bq of ¹⁴⁴Ce
 - Content of Pu and TPE (*actinides*) \leq 10⁻⁵ Bq / Bq of ¹⁴⁴Ce

CeANG production in Russia

Dedicated Spent Nuclear Fuel

- ¹⁴⁴Ce:
 - Produced in nuclear reactor core
 - 5.5% in fission prod. of U
 - 3.7% in fission prod. of Pu
 - Then decay 411 d mean-life.
- Selection of best SNF at Cola NPP
 - Shortest cooling time
 - <2 years</p>
 - Highest burnup in last irr. cycle
- Delivery of SNF from Kola NPP to FSUE Mayak PA (3000 km)
 - TUK-6 container
- PA Mayak will receive fresh fuel for CeSOX prod. in March 2015

Overview of the process

Radiochemical Plant

- Standard radiochemical re-processing of SNF (Purex)
- Separation of CeO₂
- Primary encapsulation
- Activity measurement (≈<u>5%</u>)

Radioisotope Plant

- Source manufacture
- Certification ISO 9978
- Loading into W-shield
- Loading into transport cask
- R&D and upgrade of PA Mayak facilities for CeANG production ongoing since 2012

Extraction of Cerium Solution

- Complexing agent displacement chromatography for Rare Earth elements (REE)
- Reactor Spent Nuclear Fuel:
 - PA Mayak: 100 t SNF/y
 - 1 ton SNF:
 - 13 kg REE
 - 22 g ¹⁴⁴Ce (3 y, 70 kCi)
- Production
 - Start Ce-extraction in 2015
 - Ce extraction: 9-12 months
 - Delivery June-August 2016 (saint Petersburg harbor)

¹⁴⁴Ce-¹⁴⁴Pr SFRM capsule

1st challenge: Ce-only recovery

Extracting Cerium (only...)

Th. Lasserre - Neutrino Telescope 2015

2nd challenge: ²⁴⁴Cm

Traces of minor actinides

- Am, Cm, Bk, Cf,...
- Spontaneous fission (SF → <u>neutrons</u>)
- (α,n) reaction (about 10⁻² of SF)

Most hazardous: ²⁴⁴Cm

- ²⁴⁴Cm ~ all Cm after 3 years
- T =18,1 y ; I_{SF} =1.4.10⁻⁶ ; 2,7 n/SF
- Heavier minor actinides
 - Higher branching ratio to SF
 - Much less produced in reactor

CeSOX specification

- ²⁴⁴Cm/¹⁴⁴Ce < 10⁻⁵ Bq/Bq (Driven by LNGS regulation)
- Factor 1/1000 rejection needed during the chromatography

Isotope	Half-life	$I_{ m SF}~(\%)$	Specific neutron activity (n/g)
$^{241}\mathrm{Am}$	$432.2\mathrm{y}$	$4.0 10^{-10}$	1.2
$^{242m}\mathrm{Am}$	$141\mathrm{y}$	$4.7 \ 10^{-9}$	46
$^{243}\mathrm{Am}$	$7370\mathrm{y}$	$3.7 10^{-9}$	0.72
243 Cm	$29.1\mathrm{y}$	$5.3 \ 10^{-9}$	$2.6 10^2$
244 Cm	$18.10\mathrm{y}$	$1.4 \ 10^{-4}$	$1.6 10^7$
$^{245}\mathrm{Cm}$	$8.510^3{ m y}$	$6.1 10^{-7}$	$1.1 10^2$
$^{246}\mathrm{Cm}$	$4.73 \ 10^3 \mathrm{y}$	$3.0 10^{-2}$	$1.0 10^7$
248 Cm	$3.40 \ 10^5 \ y$	8.39	$4.2 10^7$

¹⁴⁴Ce-¹⁴⁴Pr Antineutrino Generator (CeANG) Characterization

¹⁴⁴Ce-¹⁴⁴Pr samples from Mayak

- Pilot production phase in Mayak (2013)
 - PBq scale 6 y old fuel
 - 3x 10 cm³ Ce(NO₃)₃ samples 59 kBq/¹⁴⁴Ce
- γ-spectroscopy
 - Characterization of β/γ impurity content
- β-spectroscopy
 - Measure ¹⁴⁴Ce & ¹⁴⁴Pr β-spectra: Heat/Activity conversion
 - Predict the ¹⁴⁴Pr v-spectrum: expected v-rate
 - Realization of two β-spectrometers
- ICP-MS & EAS and α-spectroscopy
 - Characterization of neutron impurity content

Cea

$Ce(NO_3)_3$ samples: γ spectroscopy

- Absence of impurities emitting γ 's
 - <10⁻⁴ Bq/Bq of ¹⁴⁴Ce for E>500 keV
 - <10⁻³ Bq/Bq of ¹⁴⁴Ce for E<500 keV</p>
- Activity
 - 01/10/2014
 - 58,9 (2.5) kBq in ¹⁴⁴Ce

Cea

Ce(NO₃)₃ samples: α **spectroscopy**

Deposition and evaporation of 250 μ I of Ce(NO₃)₃ solution

CANBERRA type IN 114, ionization chamber, 100% in 2π st. $\sigma_{\rm E}$ = 40 keV at CEA/LASE

 α -spectrometry (12 hours) Gridded ionization chamber

²⁴⁴Cm / ¹⁴⁴Ce = 8(3) 10⁻⁶ Bq/Bq

 \bullet 65000 n/s/3.7 PBq → within specifications

²⁴¹Am / ¹⁴⁴Ce = 2(2) 10⁻⁶ Bq/Bq

330 n/s/3.7 PBq → within specifications

Ce(NO₃)₃ samples: ICP-MS/AES

Measurements by CEA/LASE

- 0.25 ml sample Ce(NO₃)₃ diluted
 100 times
- Semi-quantitative analysis → 50% uncertainty
- ICP-MS/AES:
 - Cerium 30 ppm
 - ¹/₂ ¹⁴⁰Ce (stable) as expected
 - ¹/₂ ¹⁴²Ce (stable) as expected
 - Traces of ¹⁴⁴Ce as expected consistent with 6 y old fuel
 - No ¹³⁹La & No ¹⁴¹Pr Good recovery process
 - No significant impurities

But samples not fully representative of 3.7 PBq CeANG \rightarrow first step

¹⁴⁴Pr Antineutrino Spectrum

• ¹⁴⁴Ce-¹⁴⁴Pr β / \vee spectra needed with % level precision

- Power-to-activity conversion factor: 216.0 ± 1.2 W/PBq
- Prediction of the IBD rate depends on the ¹⁴⁴Pr spectral shape
- Modeling of the ¹⁴⁴Ce-¹⁴⁴Pr β/ν spectra

• Fermi theory + nucleus finite-size effects + screening + QED corrections + weak magnetism + recoils and mass effects \rightarrow 1% uncertainty (theory)

• But forbidden β -branches \rightarrow need for a measurement (shape factor, 10%)

Cea

¹⁴⁴Ce-¹⁴⁴Pr samples: β spectroscopy

erc ¹⁴⁴Ce-¹⁴⁴Pr

- Plastic spectrometers (+wire chamber)
 But low energy β's from ¹⁴⁴Ce pollute the
- determination of the ¹⁴⁴Pr-v spectrum

¹⁴⁴Pr only

- Need chemical separation of ¹⁴⁴Pr from ¹⁴⁴Ce (CEA/LNHB)
- But ¹⁴⁴Pr mean life time is only 17 min
- So need to be fast...
- Detection methods:
 - (¹⁴⁴Pr)_s in PS + PMTs
 - (¹⁴⁴Pr)_s onto Si-detector
- Ongoing measurements. Needed by 2016

Th. Lasserre - Neutrino Telescope 2015

CEA spectrometer (under construction)

TUM spectrometer (PRL. 112, 122501)

High-Density Tungsten Alloy Shielding (HDTAS)

Gamma Backgrounds of ¹⁴⁴Ce-¹⁴⁴Pr

erc • γ rays

Cea

- γ rays produced by the decay through excited states of ¹⁴⁴Pr
 Intensity γ >1 MeV
 Intensity γ >2 MeV
 - 1380 keV 0.007 %
 - 1489 keV 0.3 %

2185 keV – 0.7 %
 (2.10¹⁰ γ /sec for 3.7 PBq)

HDTAS: Mechanics

Mockup at TU München

HDTAS: Radiation Dose

Computation by CEA/SPR

- Code Mercurad v1.10
- Code MCNPX v2.7.0

Hypothesis

- 5.5 PBq in ¹⁴⁴Ce
- γ-emitters in Ce < 10⁻³ Bq/Bq
- n emitters in Ce < 10⁻⁵ Bq/Bq

Gamma Radiation dose

- at contact <120 µSv/h</p>
- at 1 m <7 µSv/h
- Source: ¹⁴⁴Pr de-excitation

Neutron Radiation dose

- 'at contact' <100 nSv/h</p>
- at 1 m <4 nSv/h
- Source: ²⁴⁴Cm SF (<10⁵ n/s)

HDTAS: Thermal Features

4.6 PBq (CeANG)-W temperature distribution alone in air at 38°C. Assuming a temperature of 20°C. The temperature of the shield surface will be 80°C.

valeurs des isothermes (°C)

valeurs des isothermes (°C)

erc

T°C max in Cerium 526 HDTAS Averaged T°C in cerium 398

T°C max of inner capsule 434

HD	TAS + Capsule	
T°C max of external	T°C max of	External
capsule	HDTAS	HDTAS T°C
338	153	119

CeANG insertion into HDTAS

22

¹⁴⁴Ce-¹⁴⁴Pr Antineutrino generator transportation

TN MTR Transport Cask

TN MTR Certification for CeSOX

TN MTR

- Suitable container for Nuclear Fuel
- 2 m \odot x 2 m height M_{max} = 24 ton (30g ¹⁴⁴Ce...)
- Large internal cavity (1 m \otimes x 1 m height)
- 4 existing casks (3 for AREVA TN, 1 for CEA)
- Packed into a 20' ISO-container
- CeSOX package certification
 - Engineering by AREVA TN & CEA
 - Thermal & Radioprotection studies
 - Need dedicated basket to hold the W-shield

Status

- Request submitted to French authority (11/2014)
- Validation expected by April 2015
- Then need a validation in Italy (+4 months)

Transport Routes & Logistics

- IAEA Regulations for the Safe Transport of Radioactive Material
- Train / Dedicated Boat/ Truck: 3 weeks (5% activity loss)

Arrival of the CeANG at LNGS

Gran Sasso National Laboratory

Hall C (Opera / Borexino)

Inserting the CeANG beneath BX

Custom trolley rails // Installation March 2015

CR1 clean room

Th. Lasserre - Neutrino Telescope 2015

Manual winch

41

Neutrino Activity Measurement

Calorimetric measurement

CEA Calorimeter

Earthquake proofed design

electrical dummy Source + Calo prototype

TUM/Genova Calorimeter

- Super-insulator (radiation)
- Isolating structure (conduction)

- Base supporting the HDTAS
- Vacuum chamber & Cooling

CeANG inside SOX pit @ LNGS

- Use based of TUM/Genova-Calo as trolley & cooling device
- Slide the CeANG into the pit Radiation dose controls (0.5 y)

Deployment

Th. Lasserre - Neutrino Telescope 2015

cea

erc

Gamma Background

- Random coincidence between two γ's from CeANG
- IDB-like event:
 - Prompt: $E_{\gamma} > 1 \text{ MeV}$
 - Delayed: E_d in [2 2.4] MeV
 - Time window: 1 ms (3 τ)
- Simulations
 - GEANT4 (limited)
 - TRIPOLI-4

Results:

- 2 10⁻⁴ event/day (w/o E cut)
- O(10⁻⁵⁾ event/day (w E cut)
- 50% uncertainty
- Negligible (HDTAS design)

Neutron Background

- Minor actinides SF fission
 - 10⁻⁵ Bq ²⁴⁴Cm / Bq ¹⁴⁴Ce
- 2 neutrons captured in BX releasing 2 γ's
- IDB-like event:
 - Prompt: E_y > 1 MeV
 - Delayed: E_d in [2 2.4] MeV
 - Time window: 1 ms (3 τ)
- Simulations
 - TRIPOLI-4
- Results:
 - < O(10⁻²) event/day
 - 50% uncertainty

erc

Sensitivity Studies

3.7 PBq (100 kCi) - 1.5 year of data taking Activity measurement uncertainty: 1.5% Shape only analysis (- - -) & Rate + Shape analysis (---)

Exclusion contour (90% CL)

Discovery potential (99% CL)

CrSOX:

⁵¹Cr next to Borexino

(Borexino Collaboration)

⁵¹CrSOX overview

- ⁵¹Cr (EC decay)
 E = 0.75 MeV
 t_{1/2} = 26 days
- Production through n_{th} irradiation of enriched
 ⁵⁰Cr in a nuclear reactor
- Need: 370 PBq ⁵¹Cr
 - 62 PBq in Gallex/Sage
- Detection:
 - ν scattering off electrons
- Status:
 - R&D phase
 - To be deployed after CeSOX

⁵¹Cr source production

Re-use Gallex 36 kg ⁵⁰Cr

- enriched ⁵⁰Cr (38.6%)
- depleted in ⁵³Cr (0.7%)
- Transform the Cr chips into 650 metal rods
 - Induction melting
 - Impurities?

HB-1

HB-3

HB-4

Peripheral Target

Positions (PTP)

Target

Hydraulic

ube (HT)

Irradiation at Oak Ridge HFIR

- 1 or 2 40 days cycle(s)
- 180 PBq could be reached
- After irradiation
 - Insertion in a custom made capsule in hot cell
 - Quick flight to Italy
- Repeat operations to reach 10 MCi

HB-2

10

CrSOX sensitivity

Conclusion & Outlook

CeSOX

- **CeANG:** 3.7 PBq to be delivered in June-August 2016
- Shielding: Ordered to Xiamen (China)
- **Logistic:** Engineering design completed. TN-MTR licensing ongoing.
- Activity Calibration: 2 calorimeters being realized
- **Borexino Upgrade:** Rail system installation in 03/2015
- Risk: legal authorizations schedule
- CrSOX
 - CrNG: Feasibility study for producing 2 x 180 PBq at Oak Ridge
 - Deployment: after CeSOX