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This paper is concerned with establishing the mathematical basis of the
Critical-Path Method—a new tool for planning, scheduling, and coordinat-
ing complex engineering-type projects. The essential ingredient of the
technique is a mathematical model that incorporates sequence information,
durations, and costs for each component of the project. It is a special
parametric linear program that, via the primal-dual algorithm, may be
solved efficiently by network flow methods. Analysis of the solutions of the
model enables operating personnel to answer questions concerning labor
needs, budget requirements, procurement and design limitations, the
effects of delays, and communication difficulties.

URING the past few years there has developed a growing interest in

the problems of managing large projects. The literature on the

subject ranges from statements of problem areas through case histories to

mathematical and statistical analyses of some sophistication. Most of

these latter analyses are concerned primarily with discovering and explor-

ing structural characteristics of projects with the objective of making plans,
schedules, and forecasts of various types.

While it is generally realized that the fundamental characteristic of all
projects is that all the activities involved must be performed in some well-
defined order, it appears that little has been done to make explicit use of
thisfact. Recently, however, two parallel efforts, which take their origins in
the series-parallel relations among project activities, have been under way.
One of these efforts is reported in reference 12 and is called the PERT sys-
tem. It is concerned primarily with monitoring progress on R and D proj-
ects. The other effort, called the Critical-Path Method, is reported in
references 1, 3, 6,7,8,10, 11, 13, and 14. It is concerned with the planning,
scheduling, and cost-control aspects of project work. '

In the present paper we will be concerned with only the mathematical
basis of the Critical-Path Method. The historical development of the
method and applications, as well as a comparison with PERT, is contained
in reference 11.

* Part of this work was done while the author was with Remington Rand
UNIVAC.
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The mathematical model upon which the Critical-Path Method is
based is a parametric linear program that has the objective of computing
the utility of a project as a function of its duration. For each feasible
project duration, a feasible project schedule is obtained that has maximum
utility among all feasible schedules of the same project duration.

The parametric linear program involved has special structural proper-
ties that allow it to be solved efficiently by special techniques. Three
methods have been developed. The first is based on the work of Gass AND
Saary.”  Considerable simplification of their method is made possible
by the fact that the constraint matrix involved here is similar to and has
essentially the same properties as the Hitchcock-Koopmans transportation
problem: all matrix entries are 0 or 1 and every basis matrix is triangular.
This method, which has only historical interest at present, is reported in
references 7 and 8, and will not be considered further here.

However, as a result of the discovery of the relation between para-
metric programming and the primal-dual algorithm,” an even more effi-
cient algorithm has been developed. Fundamental to this algorithm is the
solution of a maximum network flow problem with both positive upper and
lower bound capacity restrictions. A slight variation of the Ford-Fulker-
son flow algorithm' is all that is required to solve this flow problem.

The third method, developed by Furkerson,™ also approaches the
problem via network flow theory. However, his approach to the problem,
and the network flow algorithm he develops, differs enough from ours to
warrant separate publications. The differences in approach to the problem
should be of philosophical interest to those concerned with constructing
special linear-programming algorithms. TFurther, which of our algorithms
is better computationally is essentially unknown at present. Indeed, it is
not unlikely that a hybrid version of the two methods might turn out to
be more advantageous than either technique alone.

Significant results have been obtained by applying the Critical-Path
Method to the design, procurement, and fabrication functions of a variety
of project types. The fol]owing\list of applications is merely suggestive:

1. All types of construction and maintenance.

2. Retooling programs for high-volume production.

3. Low-volume production scheduling.

4. Scientific missile countdown procedures.

5. Budget planning.

6. Mobilization, strategic and tactical planning.

7. New product launching.

8. Assembly and testing of electronic systems.

9. Installation, programming, and debugging of computer systems.
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FORMULATION OF THE PROBLEM

Lyt K be a finite partially ordered set of n+1 elements called events. There
are two distinguished events in E, origin and lerminus, respectively, with
the property that origin precedes and terminus follows every event in E.

Kach event is denoted by a nonnegative integer, its label. Since F is
partially ordered, we may assume that the events are labeled such that if
event 7 precedes event j then 2<j. In particular, origin is given the label 0
and terminus is given the label n.

Also associated with event 7 is a nonnegative number, ¢;, which repre-
sents the time at which the event occurs. Thus, if event ¢ precedes event j
then ¢;=t;. We will always let {,=0.

An activity is an element, (2,7), of /X E, such that 7<j. Associated
with each activity is a nonnegative number, y;;, its duration. It is as-
sumed that activity (z,7) must be performed sometime between the oc-
currences of event 7 and event j. Thus we must have

yii+ti—t;=0. (1)

A project, P, is a set of events and activities with the property that if
event k is in P then £ is either origin or terminus, or else there exist events
7 and 7 in P such that activities (7,k) and (k,7) are both in P.

An assignment of durations, ¥.;, to activities and occurrence times, ¢;, to
events in P is called a schedule. A schedule will be denoted by {y,t}, where
y and t are vectors whose coordinates are the y;; and ¢;, respectively, which
define the schedule. If there are m activities in P, {y,t} may be inter-
preted as a vector in an (m+n-1)-dimensional Euclidean space.

Sometimes the duration of an activity is a matter of management de-
cision subject to certain restrictions. The simplest restrictions, and the
only ones with which we will deal, are that 7;; be bounded above and below
for each activity in P. : That is, there are numbers d;; and D;; such that

0=d;;=9:;=D;j<® (2)

for all (7,7) in I>. We will call D;; the normal duration of activity (z,j);
d;; will be called the expedited or crash duration.

Remark 1: The value of d;; is an approximation to the fastest time in
which an activity can be performed and is determined by the nature of the
activity and the environment in which it must be performed. On the other
hand, D;; must usually be established by fiat. It represents a ‘reasonable’
performance time under ‘normal’ circumstances.

A schedule satisfying (1) and (2) with £,=0 is called a feastble schedule.
The duration actually sclected for cach activity when forming a feasible
schedule is made to depend upon its wizlity. Tor the moment we will as-
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sume that the utility of an activity is a linear function of its duration on the
closed interval defined by (2) and hasthe form: a;;y:;-b:;, where 0= a;; < «
and — 0 <b;;< .

The wutility of a schedule is defined as the sum of the utilities of the in-
dividual activities in P, viz.:

2 er (@iyii+bis). (3)

The duration of a schedule is A\=t,.

It is clear that among all feasible schedules having a given duration, A,
there is at least one which has maximum utility, i.e., maximizes (3). Such
a feasible schedule will be called optzmal. We denote this value of (3)
for this schedule by U(\).*

Considered as a function of A\, U(\) will be called the project utility
Sunction.

Our main objective is to find an algorithm for generating U(N) and op-
timum feasible schedules that define it. Some uses for U(M) will be con-
sidered in a later section.

REmMARK 2: There is some justification outside of the limitations of the
mathematical techniques we employ for assuming that activity utility func-
tions are nondecreasing and linear. Assume that the utility of activity
(4,7) is greatest at d;;. Then in any optimal feasible schedule we would al-
ways have y;;=d;;. Thus, the ‘effective’ utility of (4,7) on [di;, D] is a
constant equal to the utility at d;;. For general utility functions the same
remark holds on any subinterval [p,q] of [d:;, D:;] where the utility at p is
greater than the utility at any other point in [p,q]. Thus, the ‘effective’
utility of (7,7) on [d:;, D] is always nondecreasing. Further, it is often
very difficult in practice to obtain estimates of an activity’s utility for more
than just a few durations. In such circumstances, taking the trend is a
reasonable thing to do. However, as we will see in a later section, the
linearity assumption may be replaced by the assumption that an activity’s
utility function is piece-wise linear, nondecreasing, and concave between its
crash and normal durations.

PRACTICAL RULES FOR DESCRIBING A PROJECT

Tue process of describing the order relations among the activities of a
project is facilitated by the use of a graphical technique. Ifach activity in
the project is denoted by an arrow that depicts the activity’s existence and
the direction of time-flow (time flows from the tail to the head of an arrow).
The arrows are then interconnected to show the sequence relations among

* Whenever the measure of utility is cost, loss, ete., which require minimization,
we simply take the negative of the function and then maximize.
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the activities. The result is a directed graph with no directed circuits.
The nodes of the graph correspond to the events of the project. Figure 5
typifies a project graph.

Note that it is not usual to represent the elements (project activities
here) of a partially ordered set by the edges of a directed graph. More
commonly, one represents them by the nodes, as with a lattice diagram.
However, it is clear that each node of a lattice diagram can be replaced by
a directed edge or arrow in such a way that all edges directed to a node are
directed to the tail of the arrow replacing it and all edges directed from a
node are directed from the head of the arrow. In this way all elements of
the partially ordered set may be represented by directed edges.

If this approach were to be adopted, the resulting project graph would
be replete with fictitious or dummy activities—anywhere from = to
14 n(n—1) dummies in a project of n activities. Of course, many of these
dummies are not necessary and could be eliminated.*

A more practical approach, requiring the introduction of far fewer dum-
mies, may be obtained by starting directly with the ‘arrow’ representation
of an activity. As the arrows are connected to form the project graph,
dummies are introduced, as needed, to preserve the order relations among
the activities. The following rules cover these situations and others of
practical interest:

Rule 1: Composite Activities. Let activity A be a predecessor of ac-
tivity B. In practice, A is often interpreted in such a way that B can be
started as soon as A is partially completed. Or, more generally, many
activities may be started as soon as A is some percentage toward comple-
tion. In this situation we consider A to be a composite of many activities.
For example, if activity C can be started when A is half completed, activity
D when A is three-quarters completed, and activity B when 4 is fully com-
pleted, we consider A to be a composite of three different activities: A,
Ay, and A3 The example is illustrated in Fig. 1.

By making use of Ehis device of redefining activities in terms of their
components when the occasion demands it, we may always assume that
each job in a project is fully completed before any of its successors can

* An interesting combinatorial problem is suggested by the desire to eliminate
unnecessary dummies, although it is not of much practical interest in the present con-
text. Given a directed graph with no directed circuits in which certain edges are
distinguished, the remaining edges being undistinguished. A distinguished edge may
be contracted to a point only if the order relations among undistinguished edges are
preserved thereby. Problem: What is the maximum number of distinguished edges
that can be contracted to points?

T It has been observed that by using these rules on ‘real’ projects, the resulting
number of activities (including dummies) averages 1.7 the number of events.
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begin. Of course, a separate analysis of the utility function of each com-
ponent must be made.

Rule 2: Concurrent Activities. It can happen that two or more activi-
ties must begin and end at the same events in a project. This situation is
ambiguous, since all these activities would have the same designation
numbers. In order to eliminate this ambiguity we consider all but one of
these activities to be a composite of two activities: one is the activity it-
self while the other is a fictitious activity or dummy. This situation is
illustrated in Fig. 2. Activities B and C must be completed before E can
start. Dummy activity X is introduced in order to distinguish B and C
from one another but still maintain the required sequencing of the activi-
ties. A utility of zero and normal and crash durations of zero are assigned
to X.

Rule 3: Aggregated Activities. Sometimes a certain group of activities
can be considered as one activity. This interpretation may be quite de-

Figure 1 Figure 2

sirable, especially when all the activities in the group are technologically
ordered and can be considered to form a small project in their own right.
When this type of situation occurs a dummy may be substituted for the
whole group of activities. Indeed, by this type of aggregation, major
projects may be simplified for certain purposes. Figure 3 illustrates this
case. The dummy X \is substituted for activities B, C, D, E, and F. Of
course, a special analysis of the utility function and durations limits for X
must be made (see Remark 5 in the section “A Non-Linear Extension”).

Rule 4: Dependent and Independent Activities. It can often occur that
a certain activity, C, is a successor of two concurrent activities, A and B,
but B may have a successor, D, that is not also a successor of A. This
situation may be handled by introducing a dummy, X, as indicated in Fig.
4. The interpretation is clear. A utility of zero and normal and crash
durations of zero are assigned to X.

Rule 5: Lead-Time Activity. Eventually a project must be put on the
calendar. It is thus necessary to introduce at least one activity that starts
at the zero date on the calendar and terminates at the start of the project.
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This activity is interpreted as the lead time for the entire project. It may
be used to aggregate certain administrative matters that must be taken
care of before the actual start of the project.

Usually the normal duration of lead time is the time from some fixed
calendar date to the assumed project start date. The crash duration is
zero. Other duration limits are possible, depending on the interpretation
of lead time.

The utility function of lead time is usually given a zero slope. How-
ever, when it is desirable to delay the start of the project as much as pos-
sible, a large positive slope is sometimes assigned to the utility function.

Rule 6: Start Conditions. The initiation of some activities in a project
may depend on the delivery of certain items or on proper conditions—ma-
terials, plans, authorization of funds, weather, etc. When all activities
emanating from event 7 depend on the same start condition, a constraint of
the form ¢;= T must be included in the model of the project. The time,
relative to the start of the project, at which these activities may start is
denoted by 7.

The addition of start conditions to the model does not alter its form
essentially. We may reduce the modified problem to the standard form of
(1) and (2) by introducing the dummy activity (0,f) such that Dg;=
do;=T and ag;=bo;=0. Tt is easy to see that with these conditions any
feasible schedule must have £;=7'.

When not all activities emanating from event 7 are dependent on the
start condition, Rule 4 above is applied in the obvious way to ensure that
they will be independent of the start condition.

o A . c

~{=>0

0—-—=->0

(o) o

Figure 4
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If several deliveries are to be made to event 7z from origin, Rule 2 must
be applied to eliminate the ambiguity of them all having the same designa-
tion numbers.

AN EXAMPLE OF A PROJECT

THE FOLLOWING is a typical situation encountered in a chemical processing
plant:

Imagine a reactor and storage tank interconnected by a 3-inch insulated
process line. Because of process conditions, the line needs periodic replace-
ment. Interspersed along the line and at the terminals are valves. All
valves need replacing as well. No pipe or valves are in stock. Accurate
‘as built’ drawings exist and are readily available. The line is overhead so
scaffolding is required for the replacement operation. Adequate craft
labor is available. It is assumed that in order to minimize down time on
the production unit, work on the project will proceed on an ‘around-the-
clock’ basis.

The Works Engineer has requested the Maintenance and Construction
Superintendent, who is responsible for renewing the pipeline, to prepare a
plan and schedule for review with the Operating Departments. The plant
Methods and Standards Section has furnished the data of Table I for the
various activities involved in the project.

TABLE I
. Normal Crash
Activit, Description
ity P Duration Cost (§) Duration Cost (8)
(hours) (hours)
A Develop material list 8 100 8 100
B Deactivate old line 8 150 8 150
C Erect scaffold 12 300 8 450
D Remove scaffold ; 4 100 2 170
E Procure pipe 200 850 130 1100
F Prefab pipe sections 40 1200 25 2000
G Place new pipe 32 800 12 1900
H Weld pipe 8 100 4 300
I Tit-up pipe and valves 8 100 4 250
J Procure valves 225 300 140 600
K Place valves 8 100 4 250
L Remove old pipe and valves 35 400 18 1000
M Insulate pipe 24 300 12 700
N Pressure test 6 50 3 100
P Clean-up and start-up 4 100 2 200
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Figure 5

The sequencing relations among the activities of the pipeline renewal
project are shown in the graph of Fig. 5. I'or example, the arrow labeled
B is activity (3,4), ‘deactivate old line.’

Activity (0,1) labeled L.T., is lead time for the project. Activity (0,3)
represents the delivery of the line from the Operating Department to the
Maintenance Department.

Note that in Fig. 5 there are certain activities represented by broken-
line arrows. These are ‘dummy’ activities that only signify the sequencing
of certain other activities. Thus dummy activity (10, 11) implies that
removing the scaffold not only depends on the completion of the insulating
of pipe but also on the fitting-up of pipes and valves.

It is important to note that the project might have been set up differ-
ently, depending on the desires of management. For example, instead of
prefabricating all the pipe sections before placing them, both activities
might be done together. Similarly, the welding of the pipe might also be
done together with the placing of new pipe. Indeed, this latter situation
may be required by the nature of the pipe fitting.

There may be other possibilities for combining activities or rearranging
their order of execution, each of which gives the project a different aspect.
An important feature of a project graph is that it allows one to see at a
glance all the interrelations among the activities. In practice, a project
graph often suggests how activities may be arranged to better advantage
than originally conceived.

THE PRIMAL-DUAL ALGORITHM

We MaY view the problem of maximizing (3) subject to (1) and (2)
with £, =0 and ¢,=X\ as a parametric linear program with parameter \. We
propose to use the primal-dual algorithm™ to solve it and proceed as
follows:

Let {y,t} be an optimal feasible schedule of duration A and define the
following sets of activities:
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Q=1 (6N ysj+ti—1t;=0, (4,)) € P},
Q:={(4,7)lyi;=Di;>dij, (4,7) € P},
Qs={(4,) |yij=Dij=dij, (1,j) €P},
Qs={(1,7)|yi;=d:; <Dy, (i,j) €P}.

The salient features of the primal-dual algorithm, when specialized to
the present case, may be summarized in the following

Turorem 1: Let {y,t} be an optimal feasible schedule of duration \. If
aij, (4,7) €P, and &;, 0=1=n, minimaze the linear form

D Ger Gij 0ij (4)
subgect to pij=0ij+0:—8;20, (4,7)€Q:
207 (7')]) Ean Qz
oiiy =0, (4,7)€EP—(Q;—Qs) (5)
=0, (L) EQNQ

=0 and 6§,=1,
then the schedule {y',t'} defined by
yii=yi—Ooi, (1) €L
ti=1;—006;, 0=7i=n
1s an optimal feasible schedule of duration N =X\—0, where 0= 0=60,>0 and
6o=min[e,B,y]

_Jming;co [(yi+ti—1t5) /pij]
+o, if pi;=0 for all (4,5) € P

g= ming;;<o [(yi;—Di;) /o]
+w, if 0:;20 for all (i,j)€P

ye {min,.. 20 [(Yi—diz) /o))

N+, if 0i;20 for all (i,5) € P.
However, if (5) is inconststent then there are no feasible schedules of duration
less than \.

This theorem follows, mutatis mutandzs, from the corollary and Theorem
II of reference 9.

The primal-dual algorithm now consists in finding an optimal feasible
schedule {y,t} of duration X and then solving (4) and (5) to determine
{y',t'} of duration N\—8,. {y',t'} ¥s called a characteristic schedule. (The
problem of minimizing (4) subject to (5) is called the restricted dual
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problem.) Using this new optimal feasible schedule the process is repeated
until no feasible schedules of shorter duration can be found. At this point
the algorithm terminates.

Clearly, the above process generates a continuum of optimal feasible
schedules and U(\) between the starting and terminating values of .
However, the questions of how to find an initial optimal feasible schedule
and how to generate optimal feasible schedules of greater duration than
that of the initial one as well as how to solve (4) and (5) are as yet un-
answered. This we will do in the next three sections.

PROPERTIES OF THE PROJECT UTILITY FUNCTION
TuroreM 2: The feasible schedule, {y,t}, defined by
yij=Dij, (4, ))€P
ty=0,
ti=maxg per (Yis+t), 1=j<n,
is an optimal feasible schedule of duration N (=t,) whenever

AZmaxgmer (D) =M.

Proof. That the schedule is feasible is obvious. That it is optimal
follows from the fact that a;;=0 for all (z, j) € P.

As a corollary to Theorem 2 we obtain the obvious
TaEOREM 3: For all \=M
UN) = 2 qi.per (@i Dij+biy).

In consequence of Theorem 2 and Theorem 3 we may take the optimal
feasible schedule of Theorem 2 with A= as the initial schedule required
for the primal-dual algorithm.

TuroreM 4: Consider the feasible schedule defined by
yii=dij, (3,7) €D,
t=0,
ti=maxq,per (Yii+t), 1Sj=n,
and let m=t,. Then U()\) 7s not defined for any N <m.
Proof. Obvious.

IFor the remaining properties of interest it is expedient to use a theorem
slightly more general than required.
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TueoreM 5:  Consider the following function:
¢(x) =max{c'y|dy < F(x)}

where A is a matriz, y and ¢ are column vectors (prime denotes transposition)
and F(x) is a vector valued function of the vector x. All dimensions are such
that the matriaz operations involved are defined. If F(x) is concave in each
component for e = x= 8, where « and § are vector constants, and ¢(x) s defined
for e=x=8, then ¢(x) s concave for a=x={.

Proof. let y(x)€Y(x)={yle(x)=c"y,Ay<F(x)}.

If a2 <x,<8 then Ay(x:) SF(x1), Ay(x:) <F(x;) and
Alpy (21) + (1—p)y(22)| S uF (21) + (1 —p) F(x2)
= Fluxi+ (1—p)x2],
where 0=<u=<1. Therefore it follows that
[y (x1) + (1= )y (x) ] = €'yluxi+ (1 —p) %),

or po(x1) + (1 —p)e(x2) Selua+ (1—p)xs).
This completes the proof.

With the preceding theorems we may prove

TaeorEM 6:  U(N) s bounded, continuous, piecewise linear, nondecreasing
and concave for mSN< .

Proof. U(X) is bounded because a;; and y; are boundedforall (7, j) € P.
That it is concave follows from Theorem 5 because by substituting =0,
t»=\in (1) we see that F(x) becomes linear function of A\ in each com-
ponent. That U(X) is confinuous is clear. That it is piecewise linear
follows from Theorem 1. Since {y’,t’} is an optimal feasible schedule for
0= 6= 6,, we have that (3) is linear in 6 for 0£0=6,. Finally, that U())
is nondecreasing follows from the fact that it is concave for m<A< « and
nondecreasing for A= M.

A NETWORK FLOW ALGORITHM

It rREMAINS to develop a method for solving (4) and (5). To do this
consider the dual of (4) and (5), called the restricted primal problem:

Find w;j, (2,7) € P, that maximize the linear form
Z(i,n)G Q WUin (6)
subject to 2ocper wi— 2amer uip=0, 1 <j<n—1 (7)
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= aij, (11.7) € an Q2
=0ij, ¥ h— (€

o 0wt 5 g E:;; con éf” e )
=0) (1')j) EP“‘Q].

We may interpret u;; to be the amount of a homogeneous commodity
being transported through a network whose nodes correspond to the events
of P and whose branches correspond to the activities of P. Equations
(7) are flow conservation equations. Capacity restrictions on the allow-
able flow in a branch are stated in constraints (8). The problem is to
maximize the flow into node n subject to the capacity restrictions. The
following variant of the Ford-Fulkerson flow algorithm *! is used to solve it.

Assume that (7) and (8) are consistent and a feasible set of u;; is avail-
able. [If yi;=Dy; for all (4,7) € P, the initial schedule of Theorem 2,
then u;;=0 for all (7,7)€P is a feasible solution. The more general
case is treated in Theorem 12.] The process for solving the restricted
primal problem consists of two parts:

Part I. 1In this part labels of the form (==7,h) are attached to nodes
in accordance with the following rules:

1. Label origin with the label (—, o).

2. Consider any labeled node, %, not yet scanned. Suppose node ¢ is labeled
(£kh). (a) If (3,7)€Q:NQ, for some unlabeled node j and w;; <a.;, attach the
label (47, minfh, a;; —u;]) to node 7. (b) If (3,7)€ @N(QsUQ,) for some unlabeled
node 7, attach the label (+1,k) to node j. (¢) If (4,7)€ Q:—(QUQsUQs) for some
unlabeled node 7, leave node j unlabeled.

3. Consider any unlabeled node ¢ not yet scanned and suppose there is a node j
with the label (+k,h) such that (5,))€P. (a) If (2,5))€ QN(Q.UQs) and u;; >0,
attach the label (—j, min[h,u;;]) to node 7. (b)) If (7,7) € @NQs and u;; >ayj, attach
the label (—j, min[h,ui; —ag]) to node 7. (¢) If (¢,7)€ @ —(Q.UQsUQ.), leave node
7 unlabeled.

Use labeling rules 2 and 3 alternately where applicable until it is no longer
possible to label an unlabeled node. When applying these rules, if a node
is a candidate for a label in several ways, use any applicable label.

When the labeling process terminates, if terminus is labeled, proceed
to Part II of the algorithm. If terminus is not labeled, the algorithm
terminates, the maximum flow having been obtained.

Part II. 1In this part we modify the present solution to (7) and (8).
Thus, if terminus is labeled (+%,h), replace i, by ur.-+h. Terminus
cannot be labeled (—k,h) because, by labeling rule 3, (n,k) would have
to be in P, an impossibility. Note that A>0, otherwise terminus would
not have been labeled.
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Now consider event k. In general, if node & is labeled (4-j,m), replace
uji, by wp+h; if it is labeled (—j,m), replace ui; by ur;—h. Now proceed
in the same manner to consider node j. Eventually origin will be reached.
At that time Part IT terminates. Using the new values of u;; and erasing
all labels, Part I is repeated.

This completes the rules for the network flow algorithm.

PROPERTIES OF THE FLOW ALGORITHM
We Now determine some properties of the flow algorithm.

TueoreM 7: The flow algorithm with wu;;=0, (2,j) € P—Q1 construcls a
feasible solutzon to (7) and (8).

Proof. First note that Part IT of the algorithm selects a sequence of
nodes, S, with the following obvious properties: (@) terminus is the first
term of S, (b) origin is the last term of S, (¢) if 7 and 5 are two successive
terms in S, then either (z,7) €P or (j,2) €P, (d) no term in S appears
more than once. Now assume that a feasible set of u;; are given and the
nodes have been labeled by the rules of Part I.

To show that equation (7) is satisfied after the u;; are modified by
Part 11, let k, 7, 2 be three successive terms in S. Since the modification of
the w’s with subseripts < and j, and j and k, respectively, depend on the
labels attached to & and j we must consider four cases:

1 2 3 4
K'slabel — (+4jm) (—jm) (+im) (—jm)
j’S la‘bel (+1:,7') (+’l:,7‘) ( —?:,T) ( —7:)7')

In case I, uj becomes ug-+h and u;; becomes w:j+h. Thus,
Z(p.i)e P Upj+uij+h— Z(j.q)er Ujg—Ujp—h=0.
pFEL q#k

In the same way it can be shown that equation (7) is also satisfied for
the remaining cases.

That the modified u’s satisfy constraints (8) is clear from the way labels
were assigned. This completes the proof.

TFor the next few theorems we need the following sets: Let I be the
set of labeled nodes and J the set of unlabeled nodes obtained at the ter-
mination of the flow algorithm. Further, let

Qs={(z, il jeJ or jel, i€ J and (7,7) €Qi}.

Then we obtain
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TuroreM 8: At the lermination of the flow algorithm
(a) ificl,jeJ, then uij=as;, of (3,7) €Q— (QUQW),
o3 o ai;if (2,7) €Q1— (QUQs)
(b) ofi€d,jE1,then u,,—{o i G 1) €GN (QUQs).
(¢) ificland (7,7) €QN (QUQ4), thenj€ 1.
Proof. (a) follows from labeling rules (2a) and (2¢). The first part

of (b) follows from labeling rules (3b) and (3c); the second part follows
from rule (3a). (¢) follows from labeling rule (2b).

THrOREM 9: o and §; defined by

Laf (4,7) €Qi— (QUQy) and i€ 1, jeJ
oi=3 —1,4f (4,7) €Qi— (QUQs) and i€ J,j€1

0, otherwzse,

0,7¢€l

and 5":{1, e

constitute a feasible solution to (5).

Proof. Tt is only required to show that p;;=0, (7,7) € @4, the remaining
relations of (5) being satisfied trivially. We may enumerate all possi-
bilities as follows:

oij b 6 Py
1 0 1 0 (4, 1) EQ—(QUQy), i€, jeJ
-1 1 0 0 (4, 1) €Qi— (QUQs), i€ J, jEI
0 1 0 1 (7, ) €QN(QUQs), i€J, jET
cannot oceur (4, HDEQN(QUQY), 21, jEJ
0 0 0 0 (4, 7)€EQicl,jel
0o 1 1 0 (4,7) €QuiC J,jCJ

Since p;;=0 in all cases, the a;, and §; constitute a feasible solution to (5).

TarorREM 10: The flow algorithm constructs an optimal feasible solution to
the restricted primal problem, and o, and &;, defined by Theorem 9, constitute
an optimal feasible solution to the restricted dual problem.

Proof. From the duality theorem of linear programming, if the value
of (4) for some feasible solution to (5) equals the value of (6) for some
feasible solution to (7) and (8), then the respective feasible solutions are
also optimal. Thus, in view of Theorem 7 and Theorem 9, it is only re-
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quired to show that the value of (4) equals the value of (6) for the feasible
solutions in question.

Let H={ilic1, (4, 7) €Qs or (7, 1) €Qs}.

Define a new origin, O’, and consider the project, P’, consisting of the
following events and activities:

events of P’ ={0"JUHU J, activities of P'=RUQU T,

where R={(0', 7)|ic H}, T={(i, )icJ, jEJ}.
Let u={u if (4,7) €QUT
’ Y Z(i.k)G Q5 Wjr— Z(h,;)(; o Wi if (4,7) ER.

Now, by Theorem 8 and Theorem 9,

Uis = Aij Tij, 7'617 jEJ,
v —Q;j 0, ’I:GJ, ](:I
Thus

Do iver Tori= Diem [ Do(imbe o Wik — D€ o Wil = Dociune ey Gy T35

TFurther, it is clear that
Z(i,n)e @ Uin= Z(f,mcr' Tiny 16 ',

Finally, consider the following series:
— 2 o.ner Tos+ 2ojer [ 2o ner Tis— 2oimer Uil + D mer Gin.

Note that .j, (7, ) € P’, appears twice in this series, once with a plus sign
and once with a minus sign. Thus, the series vanishes. Similarly, the

double sums in the series vanish. Therefore, since o;;=0 if (7, j) € P—Qs,
Do GNER Qi = Do, € agBiiTii= 2 (0,ne P Toj
= 2 Gmer Bin= D Gimeq Uin.

9)

Thus the value of (4) equals the value of (6). This completes the proof.

REMARK 3: It is to be noted that Theorem 10 provides a proof of an ana-
logue of the min-cut max-flow theorem. The set @ forms a cut set for Q,.
From (9) we see that a minimum weighted cut sum equals the maximum
flow; i.e.,

2 Ge Q Aij Oij= Z(z’.n)e @y Uin.
TuroreM 11: If in the labeling process of the flow algorithm terminus 1s

gtven a label of the form (+k, « ), then no feasible schedules of shorter duration
exist and the primal-dual algorithm terminates.
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Proof. Assigning a label of the form (4%, «) means that the re-
stricted primal problem has an unbounded maximum. It follows from the
duality theorem that the restricted dual problem is inconsistent. The
conclusion follows from Theorem 1.

Now assume that it is desired to compute the complete project utility
function. In virtue of Theorem 3, the computation may begin with the
optimal feasible schedule defined by Theorem 2.* A feasible flow for the
corresponding restricted primal problem is u;;=0, (¢, j)€P. As the
computation proceeds, the restricted primal problem changes and a feasible
flow is required in order to continue the process. The following theorem
ensures that such a flow is always available.

Turorem 12:  If uy;, (4,7) € P, is an oplimum flow for the restricted primal
problem associated with the optimum feasible schedule {y, t} of duration X\,
then 1t vs also a feasible flow for the restricted primal problem associated with
the optimum feasible schedule {y', t'} of duration \— 6y defined by Theorem 1.

Proof. The flow obviously satisfies (7) for the new schedule. It must
also satisfy (8) because, by Theorem 8 and Theorem 9, u;;=0 or a;; in
the proper place for every case where an equality or inequality has changed,
thus satisfying the modified conditions.

RemArk 4: It should be noted that if d;; and D;; are integers for all
(¢,7) € P then y,; is an integer, all (¢, 7) € P, for every characteristic schedule
computed by the primal-dual algorithm.

A NONLINEAR EXTENSION

As was remarked earlier, the algorithm of the preceding sections may be
extended to handle activity utility functions that are piecewise linear,
nondecreasing and concave. Such a function may be represented in the
following form:

. ) *
Fii(ys;) =mingis,[ais” yi+0:5], dij=yi;=Dyj,

where ©>al)>--- >a5~§)g0 and each value of & is necessary. We now

show how such functions may be incorporated within the formulation of
(1), (2), and (3). In order to simplify notation we drop the subscripts
1 and j from the applicable variables and restrict, without loss of generality,
our discussion to one project activity and its terminal events.

We replace activity (7, j) with the nonlinear utility function F(y)
by a series of 7 activities with linear utility functions in the following way:
Consider the sequence {7} of events where

1=0<n< - - <i,=].

* PuLKERSON has suggested that when it is desired to start the computation at an
arbitrary point a variant of his ‘Out-of-Kilter’ method ] might be used to advantage.



Critical-Path Planning and Scheduling 313

Then (4,7) is replaced by (4o,7,), - -+, (2,-1,2,). The duration of (7;_,2:) is
»* and the time at which event 7 occurs is ¢,  Of course,

y® Dy <

Each of these new activities is made to correspond to a linear section of
F(y). Except for the first activity, the duration of each activity is bounded
by zero and the length of the projection on the y-axis of the linear section
to which it corresponds. In summary, the duration limits are

D= (b(2> -—bm)/(a(l) _a(Z)) > y(l)) >d,
—-b(k-H)_b(k) b(k)_b(k—l)

=2 77 7 TV >yW®> <k<
ak) — g+ qk=1) g k) =Y =0' (2=IC=7')

(k)

The utility function of activity (Z¢—,7;) is then

FOL = ay '+, (k=1)
FTI= gwyw, @2=k=r)

Clearly, the nonlinear problem has been reduced to a linear problem of the
form of (1), (2), and (3).

To show that an optimal solution to the linear problem solves the non-
linear problem, let the duration of (z,j) in an optimal solution to the non-
linear problem be 5. Then, as is easily seen,

y(k) — min[D(L)’t(L) _t(k_l)], t(o) — ti,
tP =min[D® +t*"y] for 1=Zk=r,

constitutes a feasible solution to the linear problem with the same project
utility value.

On the other hand, if ¥*, (), 1=k=<r, with {¥=¢; and t” =¢; is an
optimal feasible solution to the linear problem, then, since a®’ =0 for all k,
we may take

,y(k) — min[])(l.:)’ t(k) _t(k-—l)].

This equality must occur if ¢ >0. When "’ =0 we may use the equality
to define ¥* without losing anything essential to our argument.
Therefore, y= Y i1 ¥ is a feasible solution to the nonlinear problem.
However, since a®>a®**™, if y*® <D™ then y**’=0 and F(y)= > 17
F(k) [y(k)].
It follows, therefore, that y is an optimal solution to the nonlinear prob-
lem. Thus, the solution to the linear problem solves the nonlinear problem.

REMARK 5:  The ability to handle the nonlinear problem within the frame-

* Here t© and {® are not to be confused with-earliest and latest event times.
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work of the linear problem is not only useful of itself, but also provides an
important method for reducing the effort required to solve extremely large
project scheduling problems. Quite often large portions of a project dia-
gram form individual projects in their own right. They connect into the
whole project at only two points, their origin and terminus, respectively.
Each of these subprojects can be solved separately, a spectrum of solutions
and a utility function being obtained in each case. KEach subproject may
now be replaced in the project by a single activity with the same utility
function as the subproject it replaces (see diagramming Rule 3 on ag-
gregated activities). The original project is now smaller by many ac-
tivities and events and can be solved more easily than before.

REMmARK 6: Of course explicit replacement of an activity with a nonlinear
utility function by a series of r activities is not required in practice. Thus,
the project diagram for the nonlinear problem is not complicated when
reduced to the linear case.

APPLICATIONS OF THE PROJECT UTILITY FUNCTION

THERE ARE many possibilities available for measuring utility. For ex-
ample, it may be desirable to minimize cost, effort, loss, manpower, etc.,
or maximize profit, sales, return on investment, efficiency, quality, etc.
Which of these criteria is selected depends largely on the nature of the
project and the desires of management. The two most commonly used in
industrial project work are cost and return on investment. We will limit
our discussion to these two only.

Let us assume that the utility of an activity is measured in terms of
its cost. Maximizing utility then means minimizing cost. The result of
the project utility function computation is a project cost curve that is
piecewise linear, nonincreasing, and convex where it is defined. However,
this cost curve generally only reflects the direct costs involved in perform-
ing project activities. These costs include such things as labor, equipment,
and materials—the ‘direct’ costs of the project. The computed cost curve
will thus be called the direct cost curve of the project.

Clearly there are other costs that contribute to the total project cost
such as overhead and distributives, and perhaps penalties for not com-
pleting the project or a portion of it by a certain time. These external
costs must also be taken into account when management plans how the
project should be implemented relative to over-all objectives. The major
portion of the external costs usually vary only with the duration of the
project. Thus, they form a cost curve that will be called the indirect cost
curve of the project.

A typical question that management might ask is “How should the
project be implemented so that the total investment cost is a minimum?”’
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The answer to this question can be approximated by adding the direct and
indirect cost curves together to form a tolal investment cost curve for the
project and then selecting the schedule corresponding to the minimum total
investment.

Another situation of interest occurs when it is desired to determine how
to implement a project so that return on investment is maximized. For
example, the project might be to launch a new product in time to meet
a rising market. The later the project is completed the smaller will be
the manufacturer’s share in the market. On the other hand, in the proper
circumstances, the more the project completion date is moved up the more
the project will cost. Both of these factors must be weighed in order to
determine when production should begin.

In this case we compute the estimated loss to the manufacturer for
each day the start of production is delayed and obtain a loss function.
This loss function is then added to the total investment cost curve. The
project duration where the minimum of this composite function occurs is
the point where return on investment is maximized.

Regardless of the over-all objective criterion, once management has
the project utility function, it is in a position to select one schedule from
many alternatives.

Although the preceding remarks are a little oversimplified they illustrate
what can happen in practice. An actual situation where it is required to
maximize return on investment occurs in overhaul and maintenance projects
during shutdowns of chemical plants and oil refineries. Every hour of
downtime incurs an hour of lost production. When reserves are small it is
important that the shutdown be as short as possible.

We may illustrate this situation by means of the ‘renew pipeline project’
of Fig. 5. However, we first note that there are several pieces of informa-
tion about the project that~have not been supplied in Table I. We will
assume that dummy activities (2, 3), (5, 7) and (10, 11), which serve only
to preserve sequence relations, cost nothing and take no time to perform.
That is, if (4, j) = (2, 3), (5, 7), or (10, 11) let a;;=b;;j=D;;=0.

Further, it is assumed that the Operating Department will not release
the line to the Maintenance Department for 15 days (or 360 hours) in
order to complete a production run. This delivery costs nothing, so
a="boz=0. However, dy;=Dy;=360 hours.

Finally, we assume that due to prior commitments, the Maintenance
Department cannot assign a man to activity (1,2), developing a materials
list, for six days (or 144 hours). Thus for lead time, activity (0,1), we
have doy=Dn=144 hours. It is assumed that lead time costs nothing, so
Qn = bm =0.

On the basis of this information, that of Table I, and the project diagram
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of Iig. 5, we may apply the algorithm of the previous sections to obtain
the cost curve approximated in Fig. 6.

The minimum time in which this project may be completed is 418 hours
at an approximate minimum cost of $6,807. If each activity were per-
formed at minimum time, the project duration would still be 418 hours
but would cost $9,270. The longest the project need take to attain the
minimum cost of $4,950 is 475 hours.

Direct Cost

Cost (Thousands of Dollars)

Outage Loss

v

+ +
420 440 460 480
Completion Time (Hrs.)

Figure 6

If the storage tank fed by the pipeline contains enough product to supply
production units downstream in the process for some feasible duration of
the shutdown, then a ‘best’ schedule to operate with is easily obtained pro-
vided the stock is not too much in abundance. In the latter case it would
be well to re-analyze the project on the basis of a shorter work day and thus
save on overtime. However, if the stock is in short supply a re-evaluation
of the project is also in order to see if it is possible by changing the method
of doing the project, whether a shorter project duration is possible. It may
also be that the project is really not necessary at the time. There are
several other possibilities.

CALENDAR LIMITS

Havine selected a schedule on an objective basis, it becomes necessary to
furnish the entire project organization with a detailed working schedule
that conforms to the management decision. Supervision, engineers, expe-
diters, technicians, and craftsmen must know, for each part of the project,
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what is required when, in order to implement the decision. It is also neces-
sary to index limiting deliveries and activities in order to prepare for un-
expected reverses in progress. In this section we consider how to compute
information of this type.

Given an assignment of durations to activities in the project P. Gener-
ally there are many ways to assign event times that result in a feasible
schedule of duration =\. Certainly, relative to a project start time of
zero there is a smallest possible value any event time can be. We denote
the earliest event time for event j by #”. If we define the length of a chain
or path of activities from origin to event j to be the sum of their assigned
durations, then it is easy to see that the value of #{” is the length of the
longest path. The length of the longest path from j origin to event 7, or the
earliest time for event 7, may be determined inductively in the obvious way
as follows:*

=0, (¥ =maxq er (yi+t") for 1=<j<n.

Similarly, relative to a fixed completion time, A, for the project, each event
time has a largest value denoted by t{”. It is equal to the length of the
longest path from event 7 to terminus and may be computed analogously
as follows:

=\, ’=ming, » (("—yi;) for 0=i<n.

It is now clear that ¢{” and ¢{” are the limits between which activity
(7,7) must occur. Indeed, we are immediately provided as a result with
the following important information about activity (7,7):

Earliest start time =¢{%,
earliest completion time =24 44,

latest start time =t§1) —Yij

\
latest completion time =¢{",

maximum time available =t§-l) -,

If there is a path from origin to terminus whose length equals the du-
ration of the schedule, it is called a eritical-path. All the activities in a
critical-path are limiting in the sense that a delay in any one of them will
cause a comparable delay in the completion of the project. Therefore,
they are called critical activities. Of course, a schedule, {y,t}, of duration A
possesses a critical-path and critical activities if, and only if, A=t%".

An easy way to determine if an activity is critical or not is to observe
that activity (4,7) is critical if, and only if, it utilizes the maximum time
available to it, i.e., y:; 41" —t$" =0. Tt follows that if (7,7) is critical then
£ =t and 1§ =15".

* It is easy to show that if the algorithm is started with the schedule of Theorem
2, then the ¢; of Theorem 1 are always the earliest event times ).
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On the other hand, if the maximum time available for an activity exceeds
its duration, it is called a floater. Some floaters can be delayed temporarily
or displaced in time without interfering with the completion of any follow-
ing activities. However, others, if displaced, although not affecting the
completion of the project may delay a whole chain of following activities.

TABLE II
Sequence . ! Earliest Latest Float
A‘i;‘é'ety Description Cost ‘Dg‘l;?‘-
i| J Start lFinish Start |Finish| Total | Free | Ind.
0 1| LT. | Lead time 0| 144 0144 | 11 | 1556 | 11 0 0
0, 3| — Deliver line 0| 360 0| —| — | 360 0 0 0
11 2|4 Develop mat’l | 100 8| 144 | 152 | 155 | 163 | 11 0 0
list,
2| 3| — Dummy 0 0 152 | 152 | 360 | 360 | 218 | 218 | 207
2| 4, C Erect scaffold 300 | 12| 152 | 164 | 356 | 368 | 204 | 204 | 193
2| 5| J Procure 300 | 225 | 152 | 377 | 178 [ 403 | 26| 26| 15
valves
2| 6| FE Procure pipe 850 | 200 | 152 | 352 | 163 | 363 | 11 0 0
3| 4| B Deactivate line| 150 81360 | — | — | 368 0 0 0
4| 5| L Remove pipe 400 | 35 368 | — | — | 403 0 0 0
& valves
5| 7| — Dummy 0 0,403 | — | — | 403 0 0 0
5| 8| K Place valves 100 8403 | 411 | 417 | 435 | 14| 14| 14
6| 7|F Prefab sections 1200 | 40 | 352 | 392 | 363 | 403 | 11 | 11 0
71 8| G Place new pipe| 800 | 32 | 403 | — | — | 435 0 0 0
8| 9 H Weld pipe 100 8435 | — | — | 443 0 0 0
9|10 |1 Fit-up 100 8 | 443 | 451 | 457 | 465 | 14 0 0
9|11 | M Insulate * 300 | 24| 443 | — | —|467| O] O] O
1011 — Dummy 0 0| 451 | 451 | 467 | 467 | 16 | 16 2
10|12 | N Pressure test 50 6| 451 | 457 | 465 | 471 | 14 | 14 0
11|12 |D Remove scaf- | 100 41467 — | — | 471 0 0 0
fold
12(13|P Clean up 100 41471 | — | — | 475 0 0 0

In order to determine, in advance, the character of any floater, several
measures of float have been tested. The following measures, though not
exhausting the possibilities, have been found useful. Their interpretations
are clear.

total float =¢i" -t —y.;,
free float =t5" — ¢\ —y.;,

e

independent float =max(0, t§~°’ —Yij)-
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From our previous remarks it is clear that an activity is critical if, and
only if, its total float is zero.

Free float measures the amount an activity may be displaced when all
other activities are started as early as possible (a common practice in in-
dustrial projects). Note that @, is the set of all activities whose free float
is zero.

Independent float measures the amount an activity may be displaced
no matter what the state of the other activities in the project, provided
they remain within their calendar limits.

Table II is a summary of the information supplied to supervision for the
pipeline renewal problem of Fig. 5. The durations used are the normal
durations of Table I. Of course, the times shown are all relative to origin
and must be transformed into calendar times. The information shown can
be easily put into the form of bar charts for ease of reading.

The critical activities for this schedule are shown in boldface in Table II.
The remainder of the table is self-explanatory. The total cost adds up to
$4950.

REMARK 7: It is of interest tonote thatin all ‘real’ projectsstudied to date,
less than 10 per cent of the activities have been critical—even for the
shortest duration schedules. This fact points out the fallacy, prevalent in
project work, of embarking on an ‘across-the-board’ crash program when
expediting the project end date is required. This is probably anillustration
of Pareto’s principle that “In any series of elements to be controlled, a
selected small fraction, in terms of numbers of elements, always accounts for
a large fraction, in terms of effect.” There are exceptions, of course, and
the pipeline renewal problem here illustrates this. In the minimum dura-
tion schedule, 15 out of the 20 activities involved are critical.
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