Continuum spectroscopy of light nuclei with HiRA

Robert Charity

Washington University in St. Louis

High Resolution Array.

HiRA array Washington University Michigan State, Western Michigan Indiana University Milan

Parent nucleus decays in target. Detect decay products in HiRA. Need high angular resolution (Si Strips)

1.5 mm DSSD has 32x32 strips~800 Si strips in experiment.Chip readout.

Si-CsI E- Δ E telescopes

Multi-hit capability – multiple fragments in a single telescope

Invariant Mass Method

$$M_{inv} = \sum_{i} Ek_{cm}^{i} + M^{i}$$
. decay energy $E_{T} = \sum_{i} Ek_{cm}^{i}$
 $E^{*} = M_{inv} - M_{g.s.} = E_{T} - Q_{breakup}$

An example of we get from an experiment

E/A=70 MeV ⁹C + ⁹Be reaction with HiRA

Found so far 42 resonances in ^{5,6,7}Li, ^{6,7,8}Be, ^{7,8,9}B and ^{8,9,10}C These consist of

- 21 2-body exit channels
- 13 3-body exit channels (sequential and prompt decays)
 - 7 4-body exit channels $2p+d+\alpha$, $p+\alpha+^{3}$ He, $2p+2\alpha$,
 - 1 5-body exit channels $4p+\alpha$

Most of these were known (can be used to check energy and angular calibration and simulations of detector resolution.)

These include 6 previously unknown states and 14 cases where the resonance was previously known but we provided new information. (excitation energy, width, spin, decay path, branching ratios).

Relationship between 2*p* decay and 2*n*-halo nuclei

The lightest 2*p*-decayer ⁶Be_{gs} is the mirror to the 2*n*-halo system ⁶He. Together with ⁶Li (IAS) form a isospin triplet with "two-nucleon halo".

New class of 2*p* emitter. Single proton emission violates isospin conservation. The only isospin allowed decay is a prompt 2*p* emission. Goldansky-type decay if isospin is conserved

Isobaric Multiplet Mass Equation

If no Coulomb and isospin is a good quantum Number, then mass of neutron = mass of proton. All members of an isobaric multiplet would have the same mass.

Differences in masses comes mainly from *n-p* mass difference and the Coulomb energy. Wigner showed that for a multiplet with isospin T, the mass is

 $M(T,T_z) = a + b T_z + c T_z^2$ $T_z = (N-Z)/2 = isospin projection$

Deviations to this would be related to non-isospin conserving nuclear forces. The IMME works quite well, with only a few exceptions. However, A=8 quintet is the largest deviation known.

Modification of structure for proton rich Members.

⁸Li(IAS) energy has only been measured once. Same time as ⁸Be(DIAS).

Tanihata et al, PRL 55(1985) 2676 PLB 206 (1988) 592

Blank et al. Z. Phys. A343 (1992) 375

Double Isobaric analog of ¹¹Li in ¹¹B

¹²Be beam @E/A= 50 MeV with carbon and polyethylene targets. See peak with Polyethylene target but not with ¹²C target Reaction ¹²Be(p,2n)¹¹B

For 2*p* decay branch σ =72(21)µb, should also have a *n*+*p* decay branch

Isobaric Multiplet Mass Equation for A=11, T=5/2

Reduced Coulomb energy compared to expectation from A=11, T=1/2 doublets. Confirmation of Halo structure. Consistent with ¹¹Li Halo wavefunctions calculated by Hagino and Sagawa [P(s²)=0.23] and assuming Halo wavefunctions are frozen along sextet.

PRC 86 (2012) 041307

Neutron knockout from ⁷Be $(J=3/2^{-})$

dơ/dE ^{*} [mb/MeV]

Knocking a n from the ³He, should give up positive parity ⁶Be states.

Knocking a n from the a, should give us negative parity ⁶Be states

Wide ³He-³He 0⁻,1⁻,2⁻ states with total spin =1 and L=1 are predicted near ³He+³He threshold.

Thompson and Tsang NPA 106 591 (1968) Arai, Kato, Aoyama, PRC 74 03405 (2006)

Counts

Correlations for the $2p + 2^{3}$ He events

For wide resonances, correlations dependent on how you create the state (9C structure). Egorova et al PRL 109 202502 (2012)

In the limit of extremely wide resonance, Do we only see the structure of 9C?

1) strong diproton contribution

2) ³He-³He correlation is the same as observed for the ⁷Be beam

⁹C has important diproton + ⁷Be structure

Correlations in 3-body decay

Start:

3 fragments each with a momentum vector = 9 degrees of freedom

Remove:

- a) center-of-mass motion
- b) fixed decay energy (energy conservation)
- c) arbitrary rotation

3 degrees of freedom 1 degree of freedom

3 Euler angles

Remainder = 2 degrees of freedom for correlations

The 2-dim distribution can gives us nuclear-structure information.

3-body decays can give more information than 2-body decays.

Jacobi T hyperspherical coordinates

Coulomb

Jacobi Y hyperspherical coordinates

 E_{core-p} (Jacobi y) for sequential decay

1

Can we see the correlations in the halo of the 2p emitters

Charity, Komarov, Sobotka, Elson, Manfredi, Shane, Brown, Jager Buhro Washington Univ.

Egorva, Grigorenko, Bogolyubov Lab. of Theoretical Phys. Dubna Hagino, Tohoku Univ., Sagawa, Univ. of Aziu

Clifford, Bazin, Chajecki, Coupland, Gade, Iwasaki, Kilburn, Lee,

Lukyanov, Lynch, Mocko, Lobastov, Rodgers, Sanetullaev, Tsang,

Wallace, Winkelbauer, Youngs, Barney, Showalter. NSCL, Michigan State Univ. Hudan, Metelko Indiana Univ.

Famiano, Wuosmaa, Marley, Shetty, Bedoor, McNeel, Western Michigan Univ. McCleskey, Pizzone, Roeder, Spiridon, Simmons, Trache. Texas A&M Kurokawa, RIKON

Van Goethem Kernfysisch Versneller Instit.

Ghosh, Variable Energy Cycoltron Centre, Kolkata Howard, Rutgers Univ.

Zhukov, Calmers Univ., Sweden

HiRA is a powerful tool for invariant mass spectroscopy

Exotic structure in light nuclei is not confined to nuclei near the drip lines (high T_z) but more generally to states with high T.

Strong connection between two-proton decay and two-neutron halo nuclei.

```
Two-proton decay of proton-rich members of the A=6, T=1 triplet <sup>6</sup>Be A=8, T=2 quintet <sup>8</sup>C and <sup>8</sup>B<sub>IAS</sub> A=11, T=5/2 sextet <sup>11</sup>B<sub>DIAS</sub>
```

2p decay from Isobaric analog states - new class of 2p decay

Correlations between the three-body decay fragments tell us if the decay is sequential or prompt. For prompt decay, we are sensitive to the relative diproton and Cigar configurations in the halo

Probe the cluster structure of ⁷Be and ⁹C ⁹C has a significant component of diproton structure.

