# On the Hunt for 3-Body Break-up Mechanisms in Intermediate, sub-Fermi Energy Heavy-ion Collisions

Paul Cammarata

Texas A&M University

# IWM-EC 2014



CYCLOTRON INSTITUTE TEXAS A&M UNIVERSITY

- •Background /Theoretical Motivation for Experiment
- •Experimental Design and Considerations
- •Preliminary Experimental Results
- •Future Direction of the Analysis
- •Brief Summary

"Dynamical" IMF production in Semi-Peripheral Collisions at lower- Intermediate Energies

- Enhanced Z= 3-12 emission at midrapidity
- IMF relative velocity distributions not purely Coulombic
- Anisotropic Intermediate Mass Fragment (IMF) angular distributions
- Charge asymmetric system's IMF emissions provides a "book-keeping" of neutron enrichment process occurring in the neck region.
  - Record of Interaction
    - Interaction time
    - Proximity of reaction
    - Violence of reaction

- Symmetry energy effects experimentally on:
  - Quadrupole/Octupole Moment
     Fluctuations of Quasi-projectile (QP)
  - Mass Partitioning of QP
  - Interaction time between Target and Projectile
  - Alignment of QP fragmentation
  - Velocity Correlations
  - Reaction dynamics in general
- Provides motivation behind:
  - Experimental Design and Data Analysis
  - Exploring New Analytical Techniques

Baran et al., Nucl Phys A 730 (2004) 329Colonna et al.,Baran et al., Physics Reports 410 (2005) 335Papa et al. PhysicsM. DiToro, V. Baran, M. Colonna, et al. Nucl.Phys.A 787 (2007) 585c.Colonna et al.,Lukasik et al., Phys Rev C. 55 (1997) 1906Shvedov et al.,Sobotka et al., Phys Rev C. 55 (1997) 2109Shvedov et al.,M. Colonna, Workshop on Simulations of Low and Intermediate Energy Heavy Ion Collisions, 2009

Colonna et al., Nucl. Phys A. 589 (1995) 160 Papa et al. Phys Rev C. 75 (2007) 054616 Colonna et al. Phys Rev C. 82, (2010) 054613 Shvedov et al., Phys Rev C. 81 (2010) 054605

#### Some Effects Seen Through Stochastic Mean Field Transport Simulations





V. Greco, et al., Phys. Rev. C 59 (2) (1999) 810–816 L. Shvedov et al., Phys. Rev. C 81 (5) (2010) 054605

# Reaction Dynamics and the Effects of the •Using lower-intermediate energy heavy-ion collisions:

- - •Theoretically clear difference between asy-stiff and asy-soft parameterizations
  - •Some dynamic effects theorized to be sensitive seen experimentally:
    - •124Sn +64Ni / 112Sn +58Ni at 35A MeV (CHIMERA Collab.)
    - •100Mo+100Mo /120Sn+120Sn ~20A MeV (GSI/GANIL)
    - •<sup>197</sup>Au+<sup>197</sup>Au at 15A MeV (CHIMERA Collab.)
    - •Xe+Sn at range of energies and isotopes (INDRA)
    - •<sup>86</sup>Kr+<sup>48</sup>Ca/<sup>78</sup>Kr+<sup>40</sup>Ca at 10A MeV (CHIMERA Collab.)
    - •and others (IUCF, MSU, ...)

•Focusing in: Are the signatures more sensitive at lower energies for A<sub>svs</sub>~200?

•Lower energy theoretically more sensitive (10-15A MeV).

 Specifically: focus on QP break up into heavy (Z≥3) PLF and IMF partners

# **Experimental Design and Considerations**

- Looking for 3- body breaking of the heavy systems at intermediate energy (less than the Fermi Energy)
  - QP breaking into PLF and Heavy (Z≥3) IMF
- 3 Systems Account for different N/Z and well as Z systematic effects
  - <sup>136</sup>Xe+<sup>64</sup>Ni at 15MeV/nucleon
  - <sup>124</sup>Xe+<sup>58</sup>Ni at 15MeV/nucleon
  - <sup>124</sup>Sn+<sup>64</sup>Ni at 15MeV/nucleon
- Designed an experiment sensitive to the observables of interest in an attempt to utilize the proper detection technique with the correct angular coverage while maximizing the rate of events of interest







[1] Gimeno-Nogues et al, NIM A,1997

- FAUST<sup>1</sup> Forward Array Using Silicon Technology
- 68 ΔE-E Si-CsI(TI) Telescopes Isotopic ID of LCPs and IMFs arranged into 5 rings
- Coverage: approx  $\theta = 1.65-44.9^{\circ}$
- Upgraded for Time-of-Flight (ToF) mass ID of heavy fragments via custom CS-TPO pre- amplfiers
  - Mass ID of Heavy IMF and Energetic PLFs

Thin Film Fast Plastic Scintilator

- Provides Start Signal for ToF Mass measurements in FAUST
- Accurate measurement of low beam intensity





- Parallel Plate Avalanche Counter<sup>1</sup> (PPAC)
- Heavy fragment flight time
- Position Sensitive
- Faraday cup on beam center between PPAC #1 and FAUST
  - Block elastics θ=0-0.9°
  - PLF acceptance  $\theta$ =0.9-2.3°
  - Spectrometer tuned for PLFs
- Si Detector
  - Full E for PLFs
  - ToF mass ID of PLFs
  - Collimated to decrease elastic events







- Remove majority of elastics
- Bp PLF close to Bp Beam
  - Focus the PLFs
  - Attenuate elastics

# **Preliminary Results**

- Observations of the 3-Body Break-up of the system
  - PLF + IMF
  - QT by momentum conservation
- Alignment of the Breakup
- Mass Partitioning of QP→PLF+IMF
- Possibly information about
  - Interaction time
  - Damping of collision
  - All as a function of mass and energy of the QP.

# Events of Interest – Excited QP Dynamics Below the Fermi Energy



- Excited QP -> PLF + IMF
- Not going to see the QT in this experiment
  - Approximated via conservation of momentum

## **Events of Interest:** Ternary (3-Body) Breaking of System

- Event Selection
  - PID in FAUST
- Multiplicity of Z≥3
  - Consider PID in Faust + Triplet
  - Triplet events must not be beam like
- Detect 2 Heavy Fragments
  - QP->PLF + IMF
  - QT by momentum conservation
  - E<sub>QP</sub>>600MeV
     (>25% E<sub>beam</sub>)



Heavy "Mult2" Velocities By Fragment ID (PLF or IMF)

- IMFs detected at V<sub>IMF</sub>>V<sub>Mid-rapidity</sub>
  - Detector Efficiency/Thresholds
  - Angular Coverage
- Preferential Sequential Decay vs. Prompt?
- Statistical vs. Dynamic Decay of PLF?
- Details or "book-keeping" of dynamics of interaction?

PLF + IMF  $V_{par}$  vs  $V_{perp}$  (all Detectors)





Angular Alignment of Fragmentation

- What does this say with respect to:
  - Stat vs Dyn?
  - **Prompt vs Sequential?**
  - Interaction
  - Composition of QP
- Not in great agreement with each other system-to-system

z

VQP

IME

n

V<sub>QT</sub>

ίΘ<sub>c.m.</sub>

**Convolution different** interaction dynamics

Ψ

Trend system-to-system

PLE



#### 16 Reaction plane description in the style used by the CHIMERA collaborations

#### Angular Alignment of Fragmentation

De-convolution via Cuts in E and A of the QP

• Energy Partitioning

$$E_{QP} = E_{PLF} + E_{IMF}$$

- Mass Partitioning
  - $A_{QP} = A_{PLF} + A_{IMF}$



## E<sub>QP</sub> Cuts

- 1. 600-1200 MeV
- 2. 1200-1500 MeV
- 3. 1500+ MeV

Energy QP



<sup>136</sup>Xe+<sup>64</sup>Ni at 15A MeV shown. Same cuts apply to all systems



Mass QP







Reaction plane description in the style used by the CHIMERA collabs

Out-of-Plane Angular Alignment of Fragmentation

De-convolution via Cuts in E and A of QP

- Energy Partitioning
  - $E_{QP} = E_{PLF} + E_{IMF}$
- Mass Partitioning
  - $A_{QP} = A_{PLF} + A_{IMF}$



 Largest QPs are strongest aligned

20



Reaction plane description in the style used by the CHIMERA collabs

Mass Partitioning of QP into PLF and IMF –  $A_{IMF}$  Distributions

De-convolution via Cuts in E and A of QP

• Energy Partitioning

$$E_{QP} = E_{PLF} + E_{IMF}$$

- Mass Partitioning
  - $A_{QP} = A_{PLF} + A_{IMF}$

#### Effects Observed

- With Increasing A<sub>QP</sub>
  - A<sub>IMF</sub> also increases
- With Increasing E<sub>QP</sub>
  - A<sub>IMF</sub> remains nearly the same

Low E<sub>QP</sub>

High E<sub>QP</sub>

10 15 A<sup>20</sup> 25 30 35

5

#### Diagonal Lines Represent A<sub>QP</sub> Cuts



5 10 15 20 25 30 35 A<sub>IMF</sub>

A<sup>20</sup> 25

30

5

10 15

# Correlations between Relative Velocity of PLF and IMF

$$\theta_{prox} = \vec{v}_{QP} \cdot \vec{v}_{rel} / (v_{QP} * v_{rel})$$

$$\vec{v}_{rel} = \vec{v}_{PLF} - \vec{v}_{IMF}$$





System 
$$d' = \frac{N-Z}{A}$$
:  
<sup>136</sup>Xe + <sup>64</sup>Ni = 0.1800  
<sup>124</sup>Sn + <sup>64</sup>Ni = 0.1702  
<sup>124</sup>Xe + <sup>58</sup>Ni = 0.0989



# Preliminary Effects Observed

- Combined Effects of
  - Angular Distribution
  - Mass Partitioning
  - Relative Velocity Correlations between PLF and IMF
- With Increasing A<sub>QP</sub>
  - i.e. Heavier QP
  - PLF more Aligned with QT
- With Increasing  $E_{QP}$ 
  - Decreased Damping
  - Higher Angular Momentum
  - PLF less aligned with QT
  - PLF aligned away from V<sub>beam</sub> (in the reaction plane)
  - Possibly implying:
    - Lower Interaction time
    - Larger Impact Parameter
    - Time of emission/break-up

# **Future Perspectives**

- More Detailed Analysis of Observables
  - Relative Velocity Correlations of Events of Interest
  - Neck Mechanics
- Attempt extraction of fundamental parameters
  - Time of Interaction
  - Impact parameter?
- Comparison to dynamics simulations
  - CoMD-II (t=3000fm/c)
  - SMF (Twingo+Fram\_new)
- Determine Most Realistic Parameters for Machine Learning
  - Attempt to extract the most probable Esym
  - Model based analysis submitted to NIM-A

Papa et al., J. Comp Phys 208 (2005) 403 V. Greco, et al., Phys. Rev. C 59 (1999) 810–816 L. Shvedov et al., Phys. Rev. C 81 (2010) 054605 Brown et al., Phys Rev C. 87 (2013) 061601

# Summary

- Angular alignment /Velocity correlations
  - Emission Angle Correlations Suggest Dynamic Processes
  - Preferential Emission of PLF Correlated with  $E_{QP}$  and  $A_{QP}$
- Partitioning Trends
  - Some information about mass splitting
  - Heavier IMFs come from heavier QP's
  - Slight Increase in mass of emitted IMF as E<sub>QP</sub> increases
- In the Future (going forward)
  - Comparisons to simulations
  - Possible information about
    - Interaction Times
    - Gross Impact Parameter
    - Emission /Break-up Time

# Acknowledgements

## SJY Group

Alan McIntosh, Mathew Chapman, George Souliotis, Layla Bakhtiari, Lauren Heilborn, Justin Mabiala, Larry May, Mike Youngs, Andrew Zarrella, and Sherry J. Yennello

## **Collaborators**

Maria Colonna, Aldo Bonasera, and Zach Kohley



### **Texas A&M Supercomputing**

Spiros Vellas and Michael Thomadakis

## **Chemistry Department**

Will Seward and Lisa Perez

## **Cyclotron Institute**

Kris Hagel, Fred Abegglin, Robert Burch, George Kim, and Brian Roeder

Funding:

Robert A. Welch Grant#A-1266, DOE#DE-FG03-93ER40773, NSF#CHE-0541587