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Spinodal instability growth in new stochastic approaches
for the dynamics of the nuclear bulk
P. Napolitani (IPN Orsay), M. Colonna (INFN-LNS),
V. de la Mota and F. Sebille (Subatech Nantes)

• Spinodal multifragmentation :
process driven by mechanical
instabilities

• Since long advocated as a possible
mechanism in central collisions at
Fermi energy

•How to describe it quantitatively
through a mean-field approach ?

•Requirements / implementation /
simulations...
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Fermionic transport with fluctuations in one-body dynamics

• bulk properties→ the route we take is a
one-body description

•But Pure mean-field equations are not valid
in regions where instabilities, bifurcations,
chaos are present

⇒Transport description based on a
one-body H supplemented by a
contribution to introduce N-body
unknown correlations

•At the ETDHF level : R.Balian, T.Alhassid,
H.Reinhard, Phys.Rep131(1986)1 ;
E.Suraud, P-G.Reinhard, Ann.Phys.216(1992)98

time

|φn(t)>

bifurcations:
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Stochastic DYnamics of WAvelets in Nuclei

→ a possible realization through
DYWAN :

• System wave functions |ϕλ〉 projected
on an orthogonal wavelet basis |αλi 〉
ρ = nλ

∑
λ |ϕλ〉〈ϕλ| =

∑
λ
∑

ij β
λ
ij |α

λ
i 〉〈α

λ
i |

(B.Jouault, F.Sébille, V.deLaMota, NPA268(1998)119)

•Mean field : wavelet properties changed
according to the one body density matrix
evolution :
i d

dtρ = [W(ρ), ρ]

•Collisions : Wavelet weights changed
according to master equation for the
occupancy rates.

•Fluctuations : Wavelet weights redefined
by splitting the mean field in mean-field
sub-ensembles.

136Xe+124Sn at 45A MeV,
b = 2fm, two events at 200
and 400 fm/c :
variety of final configurations :
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Boltzmann-Langevin Equation (BLE) for fermionic systems

Reduction in terms of one-body distribution functions f (r,p, t)→BLE :

ḟ = ∂t f −
{
H[ f ], f

}
= Ī[ f ]+δI[ f ] → t-evolution of f in response to :

1) effective Hamiltonian H[ f ]
→ l.h.s gives the Vlasov evolution for f in
its own self-consist. MF

2) average Boltzmann hard two-body
collision integral Ī[ f ]
→mean number of transitions dνab→cd

3) unknown N-body correlations
expressed in terms of one-body f
→fluctuating term of Markovian type,
defined through its correlations :

〈δI(r,p, t)δI(r′,p′, t′)〉 = 2D(r,p; r′,p′, t′)δ(t − t′),
D : diffusion coeff related to dν
→ δI acts as a dissipating force but conserves single-part. energies
P.Chomaz, M.Colonna, J.Randrup Phys.Rep.389(2004)263
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BLE in one-body approaches: attempts, limits, recommendations
Some representative cases :
•Stochastic initial conditions
M.Colonna et al. PRC47 (1993) 1395, ...

•Projection of B-L noise on a subspace (ρ)
BOB (→ from a Brownian force
Ph.Chomaz et al. PRL73 (1994) 3512,
A.Guarnera et al. PLB403 (1997) 191),
SMF (→ from Fermi gas kin. equil.
fluctuations or from numerical noise
M.Colonna et al. NPA642 (1998) 449) , ...

•Fluctuations in full phase-space
A first attempt by W.Bauer, G.F.Bertsch
and S.Das Gupta PRL58 (1987) 863 :
If two test part. i, j collide successfully,
the same scattering applies to two
agglomerates of Ntest test part. taken
around i and j.
Transition probability divided byNtest.

•Criticism to Bauer-et-al method :
F.Chapelle, G.F.Burgio, Ph.Chomaz, J.Randrup
NPA540 (1992) 227 : Schematic Pauli
blocking implies severe effects on the
development of the fluctuation
amplitude in phase space
⇒Boltzmann statistics.

•Rizzo-et-al solution in unif. matter :
J.Rizzo, M.Colonna, Ph.Chomaz NPA806
(2008)40 : Bauer-et-al method
reformulated by imposing strict Pauli
blocking for the whole swarm of test
particles involved in the scattering.
⇒ correct Fermi statistics (average
values, variances).
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Solution of the BLE in BLOB (P.Napolitani, M.Colonna, PLB726(2013)382)
At a given time t,
in (ra,pa),
for elastic coll. :

ḟa(ra,pa) = g
∫

dpb

h3

∫
dΩ W(AB↔CD) F(AB→CD)

• “nucleon wave packets”→
→ phase-space agglomerates

of Ntest test-particles
of equal isospin
(a∈A, b∈B . . .)
• at each ∆t :
all phase space is

scanned for collisions
and all agglomerates are redefined

trans. rate : W(AB↔CD) =
〈
|va−vb|

dσ
dΩ

〉
AB→CD

=
〈
W(ab↔cd)

〉
AB→CD

occupancy : F(AB→CD) = f̄A f̄BfCfD−fAfB f̄C f̄D =
〈
F(ab→cd)

〉
AB→CD

⇒The above scheme introduces N-N correlations
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Solution of the BLE in BLOB (P.Napolitani, M.Colonna, PLB726(2013)382)
At a given time t,
in (ra,pa),
for elastic coll. :

ḟa(ra,pa) = g
∫

dpb

h3

∫
dΩ W(AB↔CD) F(AB→CD)

• “nucleon wave packets”→
→ phase-space agglomerates

of Ntest test-particles
of equal isospin
(a∈A, b∈B . . .)
• at each ∆t :
all phase space is

scanned for collisions
and all agglomerates are redefined

Then, to introduce phase-space fluctuations (P.N, M.C, EPJ Web of Conf.31,00027) :
•Random sorting of the effective collision probability W × F
accounting for the extension of initial distributions and overlap geometry
•modulation functions adapt final states to the vacancy profile
• the most compact shape chosen according to energy conservation.
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Propagation of density waves in Fermi liquids

Aim : transport model for HIC
which develops fluctuations
spontaneously and with the correct
dispersion-relation characteristics.
“Laboratory” : the mechanically
unstable region of the EOS
(e.g. T′≈3MeV, ρ′≈ρ/3)
→negative incompressibility χ−1

⇒we get imaginary solutions of the
dispersion relation, (T=0 form) :
s
2 ln

(
s+1
s−1 ) = 1 + 1

F0
,

with the Landau parameter
F0(k) = ∂ρU(k) 3ρ

2εF
→ amplification

of ρ disturbance (i.e. undulation of
wavelength λ and wave number k)
[M.Colonna,Ph.Chomaz,PRC49(1994)1908]
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Dispersion relation

Ideal hydrodynamical behaviour

The more matter is to be relocated,
the longer it takes (i.e. the larger is the
characteristic time Γ)
⇒Growth rate ~/Γ→ 0 for k→ 0 (i.e.
for large λ)

Finite range, all k modes decoupled

Finite range (F0 → g(k)F0) excludes
short λ
⇒ ~/Γ→ 0 for k→ kmax(γ,T, ρ)

Finite range, coupled k modes

Small λ compose into large λ
⇒ large k depleted, small k enhanced

Ph.Chomaz,M.Colonna,J.Randrup Phys.Rep389,263
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BLOB in nuclear matter

Calculation in a periodic
box of 39fm :

• 1584 n and 1584 p

• 40 test part. per nucleon

• tested in a unif. syst. at
T, ρ′, corresp. to the
leading wave k′

→BL term agitates
ρ profile over several k
waves spontaneously
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Mean field response in presence of instabilities

dispersion relation
Compares well with analytical relation in linear response regime :

τ−1
k = f (k, χ, ρ′,T, σ) σ : smearing, (all k decoupled )

•Difficulty : (small λ combine into large λ )
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One-body fragment phenomenology in a finite system

A) Inside of the spinodal (T′≈3MeV, ρ′≈ρ/3) :

1. Fluctuation seeds initiate the process :
the leading disturbance λ′ is the
wavelength with the largest growth rate :

2. blobs of size A′≈ρ′λ′3 develop.
3a. They may separate into fragments of

size A′≈Neon, Oxygen, if radial
expansion is large enough.
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B,C) Outside of the spinodal region : the system is either

I either not enough excited and diluted→ damped dynamics→C.N.
I or very hot and very diluted→ vaporisation→ clusters beyond MF
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BLOB in nuclei
Competition between instability growth and MF resilience
determines the fragmentation thresholds :

Data from INDRA : PRC86(2012)044617, arXiv :1310.5000(2013)
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Instability growth versus mean-field resilience

instability growth :

•→many ρ blobs
of comparable size
Afrag≈ρ(λ′)3 (≈
region of O, Ne)

partial coalescence :

•→ few fragments
of various size
asymmetries
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Some examples of fragment production in BLOB
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Bimodality
Same macroscopic initial conditions→E fluctuations
→ oscillation between two energetically favoured configurations
→ 1sto. phase trans. features found as a result of fragm. dynamics

→ bimodality in fragm. observables at b = 0 at rather small energy
(so far not investigated experimentally in these conditions)
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Conclusions

Fluctuations :

•Lead to a variety of channels in dissipative collisions→ bifurcations

• feed spinodal instability growing→ important for fragment
production at ρ 1/3ρ0

Models :

•BLE→ correct description of dispersion relation, fluctuations
originate spontaneously, 3D.

•ETDHF→Fully stochastic mean-field approach on a wavelet basis


