e Spinodal multifragmentation :
process driven by mechanical
instabilities

e Since long advocated as a possible
mechanism in central collisions at
Fermi energy

e How to describe it quantitatively
through a mean-field approach ?

e Requirements / implementation /
simulations...




o bulk properties — the route we take is a
one-body description

o But Pure mean-field equations are not valid
in regions where instabilities, bifurcations,
chaos are present

= Transport description based on a
one-body H supplemented by a
contribution to introduce N-body
unknown correlations

o At the ETDHEF level : R.BaLiaN, T.ALHASSID,

H.ReinHARD, PHYSs.REP131(1986)1;
E.Suraup, P-G.REINHARD, ANN.PHYS.216(1992)98

bifurcations:
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time




— a possible realization through
DYWAN : 136X e+124Gn at 45A MeV,

Syst functi octed b = 2fm, two events at 200
e System wave functions |p,) projecte and 400 fmy/c :

!
on an orthogonal wavelet basis |a) variety of final configurations :

p=m YalpaXeal =X Zij l).}.laz).\)(alf‘l . p— o
(B.IOUAULT, F.SépiLLE, V.DELAMoOTa, NPA268(1998)119) ! [

o Mean field : wavelet properties changed
according to the one body density matrix
evolution :

i =W (p),pl

e Collisions : Wavelet weights changed
according to master equation for the
occupancy rates.

o Fluctuations : Wavelet weights redefined
by splitting the mean field in mean-field
sub-ensembles.




Reduction in terms of one-body distribution functions f(r, p, f) — BLE :
f=0aif —{HIf1,f} = I[f1+6I[f] — t-evolution of f in response to :
1) effective Hamiltonian H[ f]

— Lh.s gives the Vlasov evolution for f in
its own self-consist. MF

2) average Boltzmann hard two-body
collision integral I[ f]
— mean number of transitions dv ;4

3) unknown N-body correlations
expressed in terms of one-body f
— fluctuating term of Markovian type,
defined through its correlations :
(1(x, p, HOI(Y, P/, ) = 2D(x, p; ¥, P/, £)5(t — '),
D : diffusion coeff related to dv

— 6l acts as a dissipating force but conserves single-part. energies
P.Cromaz, M.CoLonNa, J.RaNDRUP PHys.REP.389(2004)263 *




Some representative cases :

e Stochastic initial conditions
M.CoronNNA ET AL. PRC47 (1993) 1395, ...

e Projection of B-L noise on a subspace (p)
BOB (— from a Brownian force
Pu.Cromaz et arL. PRL73 (1994) 3512,
A.GuarnERra T AL PLB403 (1997) 191),

SMF (— from Fermi gas kin. equil.
fluctuations or from numerical noise
M.Coronna eT AL. NPAG642 (1998) 449) , ...

o Fluctuations in full phase-space

A first attempt by W.BauER, G.F.BErTscH
AND S.Das Gurra PRL58 (1987) 863 :

If two test part. 7, collide successfully,
the same scattering applies to two
agglomerates of Ny test part. taken
around i and j.

Transition probability divided byNjes.

e Criticism to Bauer-et-al method :
F.CuareLLE, G.F.Burcio, PH.CHOMAZ, ]. RANDRUP
NPA540 (1992) 227 : Schematic Pauli
blocking implies severe effects on the
development of the fluctuation
amplitude in phase space

= Boltzmann statistics.

o Rizzo-et-al solution in unif. matter :
J.R1zzo, M.CorLonNa, PH.CHOMAZ NPA806
(2008)40 : Bauer-et-al method
reformulated by imposing strict Pauli
blocking for the whole swarm of test
particles involved in the scattering.
= correct Fermi statistics (average
values, variances).

P space



At a given time t,

in (rg, pa),
for elastic coll. :

fa(ta, pa) = ¢ f f dQ W(AB« CD) F(AB— CD)

e “nucleon wave packets” —

— phase-space agglomerates

of Niest test-particles
of equal isospin
(a€A,beB..))

e ateach At:

=}

ape RN
modulation in C}: ..

L all phase space is
size expansion e |° - ..
oA anginC scanned for collisions

)

: and all agglomerates are redefined
trans. rate : W(AB & CD) = (Ivu — vy Ccll_g>AB—>CD = (W(ab o Cd)>AB—>CD

occupancy : F(AB— CD) = fafsfcfp—fafsfcfp = <F (ab— cd)>
= The above scheme introduces N-N correlations

AB—CD




At a given time t,

in (rg, pa),
for elastic coll. :

fa(ta, pa) = ¢ f f dQ W(AB« CD) F(AB— CD)

L R[fm]|P[MeV]  400-p,[MeV]

e “nucleon wave packets” —

— phase-space agglomerates
of Niest test-particles

2 R QU of equal isospin

400 ¢ SO 0 YA S (a€A,beB..))

=}

shape Eqitp e ateach At:
modulation in C{. ."." [ " .
¥ - all phase space is
Sine expanston G scanned for collisions
pan g

and all agglomerates are redefined
Then, to introduce phase-space fluctuations (PN, M.C, EP] Wes or Conr.31,00027)
e Random sorting of the effective collision probability W x F

accounting for the extension of initial distributions and overlap geometry

e modulation functions adapt final states to the vacancy profile

e the most compact shape chosen according to energy conservation.




Propagation of density waves in Fermi liquids

Aim : transport model for HIC &2

which develops fluctuations E é unstable:
spontaneously and with the correct % -1 X '=p %IEJ <0
dispersion-relation characteristics. &, :g

“Laboratory” : the mechanically éj 0 1
unstable region of the EOS o Vbaryonic density p/p,
(e.g. T'~3MeV, p'~p/3) — 3 )

— negative incompressibility x ! g I /

= we get imaginary solutions of the § T ik %
dispersion relation, (T=0 form) : > O 102
sin() =1+ £, 2t 1,8
with the Landau parameter £ L I,

1 P P

3 sl s -12 -8 4 0 4 8
Fo(k) = d, U(k)ﬁ — amplification Landau parameter F,
of p disturbance (i.e. undulation of

wavelength A and wave number k)
[M.Coronna,Pr.CHoMAzZ, PRC49(1994)1908]

i)




Ideal hydrodynamical behaviour

The more matter is to be relocated,
the longer it takes (i.e. the larger is the
characteristic time T')

= Growth rate i/T — 0 for k — 0 (i.e.
for large 1)

Finite range, all k modes decoupled

Finite range (Fo — g(k)Fo) excludes
short A
=nh/T — 0 for k = kmax(y, T, p)

Finite range, coupled k modes

Small A compose into large A
= large k depleted, small k enhanced

Pa.CHomAaz,M.CoLoNNA,J.RANDRUP PHYS.REP389,263
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Calculation in a periodic
box of 39fm :

© 1584 n and 1584 p

e 40 test part. per nucleon

e tested in a unif. syst. at
T, p’, corresp. to the
leading wave k’

— BL term agitates

p profile over several k
waves spontaneously

240 fm/c



Mean field response in presence of instabilities

In 6,2 (Fourier transform of density)
(9]
T
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Growth rate Fk‘l of instabilities [c/fm]

plpy=0.3, T=3MeV

+ J.Rizzo (fluct. 1D)
e BLOB (fluct. 3D)
— Analytical

002 04 06 08 1

Wave number k [fm™']

characteristic wavelength A=71/k disper

Compares well with analytical relation in linear response regime :

T];l =f(k, x,p’,T,0) o:smearing, (all k decoupled )

e Difficulty : (small A combine into large A ) N



One-body fragment phenomenology in a finite system

A) Inside of the spinodal (T"~3MeV, p'~p/3) :
1. Fluctuation seeds initiate the process :
the leading disturbance A" is the
wavelength with the largest growth rate
2. blobs of size A’ ~p’A”® develop.
3a. They may separate into fragments of
size A’ ~Neon, Oxygen, if radial
expansion is large enough.

rel. pressure P/P,

0 05 1
baryonic density p/p,

3b. Otherwise they coalesce giving fragments of size >A’.

1
P ) . 3)
7\ k
A0S @
B,C) Outside of the spinodal region : the system is either

» either not enough excited and diluted — damped dynamics — C.N.
» or very hot and very diluted — wvaporisation — clusters beyond MF *»



Competition between instability growth and MF resilience
determines the fragmentation thresholds :
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instability growth :

e — many p blobs
of comparable size
Afrag =~ P(A')3 (=
region of O, Ne)

o) @

%

partial coalescence :

e — few fragments
of various size
asymmetries

[
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136X e+1245n 32AMeV b=0

r=1fm/c 20 fm/c
100 fm/c 130 fm/c

136X e+124Sn 32AMeV b=6fm
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Same macroscopic initial conditions — E fluctuations
— oscillation between two energetically favoured configurations
— 1%%0. phase trans. features found as a result of fragm. dynamics

136Xe +124Sn,b=0, 300 fm/c

— bimodality in fragm. observables at b = 0 at rather small energy
(so far not investigated experimentally in these conditions) i



Fluctuations :
e Lead to a variety of channels in dissipative collisions — bifurcations

e feed spinodal instability growing — important for fragment
production at p 1/3pg

Models :

e BLE — correct description of dispersion relation, fluctuations
originate spontaneously, 3D.

e ETDHF — Fully stochastic mean-field approach on a wavelet basis



