Spinodal instability growth in new stochastic approaches for the dynamics of the nuclear bulk P. Napolitani (*IPN Orsay*), M. Colonna (*INFN-LNS*), V. de la Mota and F. Sebille (*Subatech Nantes*)

• Spinodal multifragmentation : process driven by *mechanical instabilities*

• Since long advocated as a possible mechanism in central collisions at Fermi energy

• How to describe it quantitatively through a mean-field approach?

• Requirements / implementation / simulations...

Fermionic transport with *fluctuations* in one-body dynamics

- *bulk* properties → the route we take is a *one-body* description
- But Pure mean-field equations are not valid in regions where instabilities, bifurcations, chaos are present
- \Rightarrow Transport description based on a one-body H supplemented by a contribution to introduce N-body unknown correlations
- At the ETDHF level : R.Balian, T.Alhassid, H.Reinhard, Phys.Rep131(1986)1 ; E.Suraud, P-G.Reinhard, Ann.Phys.216(1992)98

Stochastic DYnamics of WAvelets in Nuclei

 \rightarrow a possible realization through DYWAN :

• System wave functions $|\varphi_{\lambda}\rangle$ projected on an orthogonal wavelet basis $|\alpha_{i}^{\lambda}\rangle$ $\rho = n_{\lambda} \sum_{\lambda} |\varphi_{\lambda}\rangle\langle\varphi_{\lambda}| = \sum_{\lambda} \sum_{ij} \beta_{ij}^{\lambda} |\alpha_{i}^{\lambda}\rangle\langle\alpha_{i}^{\lambda}|$ (B.JOUAULT, F.SÉBILLE, V.DELAMOTA, NPA268(1998)119)

• *Mean field* : wavelet properties changed according to the one body density matrix evolution :

 $i\frac{d}{dt}\rho = [W(\rho), \rho]$

• *Collisions* : Wavelet weights changed according to master equation for the occupancy rates.

• *Fluctuations* : Wavelet weights redefined by splitting the mean field in mean-field sub-ensembles.

¹³⁶Xe+¹²⁴Sn at 45*A* MeV, b = 2fm, two events at 200 and 400 fm/c : *variety of final configurations* :

Boltzmann-Langevin Equation (BLE) for fermionic systems

Reduction in terms of one-body distribution functions $f(\mathbf{r}, \mathbf{p}, t) \rightarrow \text{BLE}$: $\dot{f} = \partial_t f - \{H[f], f\} = \bar{I}[f] + \delta I[f] \rightarrow t$ -evolution of f in response to :

- 1) effective Hamiltonian $H[f] \rightarrow$ l.h.s gives the Vlasov evolution for f in its own self-consist. MF
- 2) average Boltzmann hard two-body collision integral $\overline{I}[f]$ \rightarrow mean number of transitions $dv_{ab\rightarrow cd}$
- 3) unknown *N*-body correlations expressed in terms of one-body $f \rightarrow$ fluctuating term of Markovian type, defined through its correlations :

- $\langle \delta I(\mathbf{r}, \mathbf{p}, t) \delta I(\mathbf{r}', \mathbf{p}', t') \rangle = 2D(\mathbf{r}, \mathbf{p}; \mathbf{r}', \mathbf{p}', t') \delta(t t'),$ D : diffusion coeff related to dv
- $\rightarrow \delta I$ acts as a dissipating force but conserves single-part. energies P.Chomaz, M.Colonna, J.Randrup Phys.Rep.389(2004)263

BLE in one-body approaches: attempts, limits, recommendations

Some representative cases :

• *Stochastic initial conditions* M.Colonna et al. PRC47 (1993) 1395, ...

• Projection of B-L noise on a subspace (ρ) BOB (\rightarrow from a Brownian force Ph.Chomaz et al. PRL73 (1994) 3512, A.Guarnera et al. PLB403 (1997) 191), SMF (\rightarrow from Fermi gas kin. equil. fluctuations or from numerical noise M.Colonna et al. NPA642 (1998) 449),

• Fluctuations in full phase-space

A first attempt by W.BAUER, G.F.BERTSCH AND S.DAS GUPTA PRL58 (1987) 863 : If two test part. i, j collide successfully, the same scattering applies to two agglomerates of N_{test} test part. taken around i and j. Transition probability divided by N_{test} .

• Criticism to Bauer-et-al method :

F.Chapelle, G.F.Burgio, Ph.Chomaz, J.Randrup NPA540 (1992) 227 : Schematic Pauli blocking implies severe effects on the development of the fluctuation amplitude in phase space ⇒ Boltzmann statistics.

• Rizzo-et-al solution in unif. matter : J.Rizzo, M.Colonna, Ph.Chomaz NPA806 (2008)40 : Bauer-et-al method reformulated by imposing strict Pauli blocking for the whole swarm of test particles involved in the scattering. ⇒ correct Fermi statistics (average values, variances).

Solution of the BLE in BLOB (P.Napolitani, M.Colonna, PLB726(2013)382)

Solution of the BLE in BLOB (P.Napolitani, M.Colonna, PLB726(2013)382)

Then, to introduce *phase-space fluctuations* (P.N, M.C, EPJ WEB OF CONF.31,00027) :

• Random sorting of the effective collision probability $W \times F$

accounting for the extension of initial distributions and overlap geometry

- modulation functions adapt final states to the vacancy profile
- the most compact shape chosen according to energy conservation.

Propagation of density waves in Fermi liquids

<u>Aim</u> : transport model for HIC which develops fluctuations spontaneously and with the correct dispersion-relation characteristics.

"Laboratory" : the mechanically unstable region of the EOS (e.g. $T' \approx 3MeV$, $\rho' \approx \rho/3$) \rightarrow negative incompressibility χ^{-1}

 \Rightarrow we get imaginary solutions of the *dispersion relation*, (T=0 form) :

 $\frac{s}{2}ln(\frac{s+1}{s-1}) = 1 + \frac{1}{F_0},$ with the *Landau parameter* $F_0(\mathbf{k}) = \partial_{\rho}U(\mathbf{k})\frac{3\rho}{2\epsilon_F} \rightarrow \text{amplification}$ of ρ disturbance (i.e. undulation of wavelength λ and wave number k) [M.COLONNA, PH.CHOMAZ, PRC49(1994)1908]

Dispersion relation

Ideal hydrodynamical behaviour

The more matter is to be relocated, the longer it takes (i.e. the larger is the *characteristic time* Γ)

 $\Rightarrow Growth \ rate \ \hbar/\Gamma \to 0 \ \text{for} \ k \to 0 \ \text{(i.e.}$ for large λ)

Finite range, all k modes decoupled

Finite range $(F_0 \rightarrow g(k)F_0)$ excludes short λ

 $\Rightarrow \hbar/\Gamma \rightarrow 0 \text{ for } k \rightarrow k_{\max}(\gamma, T, \rho)$

Finite range, coupled k modes

Small λ compose into large λ \Rightarrow large *k* depleted, small *k* enhanced

Ph.Chomaz, M.Colonna, J.Randrup Phys. Rep389, 263

BLOB in nuclear matter

Calculation in a periodic box of 39fm :

- 1584 *n* and 1584 *p*
- 40 test part. per nucleon

• tested in a unif. syst. at T, ρ' , corresp. to the leading wave $k' \rightarrow$ BL term agitates ρ profile over several k waves spontaneously

Mean field response in presence of instabilities

Compares well with analytical relation in linear response regime : $\tau_k^{-1} = f(k, \chi, \rho', T, \sigma) \sigma$: smearing, (all k decoupled)

• Difficulty : (small λ combine into large λ)

One-body fragment phenomenology in a finite system

A) *Inside* of the spinodal $(T' \approx 3MeV, \rho' \approx \rho/3)$:

- Fluctuation seeds initiate the process : the *leading disturbance* λ' is the wavelength with the *largest growth rate* :
- 2. blobs of size $A' \approx \rho' \lambda'^3$ develop.
- 3a. They may separate into fragments of size A' ≈Neon, Oxygen, if radial expansion is large enough.

3b. Otherwise they coalesce giving fragments of size >A'.

B,C) Outside of the spinodal region : the system is either

- either not enough excited and diluted \rightarrow damped dynamics \rightarrow C.N.
- or very hot and very diluted \rightarrow vaporisation \rightarrow clusters beyond MF ¹²

BLOB in nuclei

Competition between instability growth and MF resilience determines the fragmentation thresholds :

Data from INDRA : PRC86(2012)044617, ARXIV :1310.5000(2013)

Instability growth versus mean-field resilience

Some examples of fragment production in BLOB

Bimodality

Same macroscopic initial conditions $\rightarrow E$ fluctuations \rightarrow oscillation between two energetically favoured configurations $\rightarrow 1^{st}$ o. phase trans. features found as a result of fragm. dynamics

 \rightarrow *bimodality* in fragm. observables at *b* = 0 at rather small energy (so far not investigated experimentally in these conditions)

Conclusions

Fluctuations :

- Lead to a variety of channels in dissipative collisions \rightarrow bifurcations
- feed spinodal instability growing \rightarrow important for fragment production at $\rho~1/3\rho_0$

Models :

- $BLE \rightarrow$ correct description of dispersion relation, fluctuations originate spontaneously, 3D.
- $ETDHF \rightarrow$ Fully stochastic mean-field approach on a wavelet basis