Pre-equilibrium emission and its possible relation to α-clustering in nuclei

T. Marchi INFN - Laboratori Nazionali di Legnaro

for the Nucl-ex collaboration

IWM-EC 2014 International Workshop on Multi facets

6-9 May 2014 Dipartimento di Fisica e Astronomia and Laboratori Nazionali del Sud Catania - Italy

α -clusters in light nuclei:

tive collisions

t particle

In 1968 Ikeda suggested that α -conjugate nuclei are observed as excited states close to decay threshold into clusters. The original idea was introduced by Hafstad and Teller in 1938. The starting point is a quite reasonable observation:

Extension of the clustering concepts

In light nuclei at the neutron drip-line, clustering might be the preferred structural mode

Nuclear states built on clusters bound by valence neutrons in their molecular configurations might appear

Extended Ikeda diagrams

tive collisions

Bonding σ

Presently these structures are mainly described by theory, but must be experimentally verified at the new radioactive beam facilities

WHAT ABOUT HEAVY NUCLEI?

Cluster emission, transfer and capture in nuclear reactions

P.E. Hodgson^a, E. Běták^{b,1}

Physics Reports 374 (2003) 1-89

1. Pre-equilibrium processes

2. Coalescence vs Preformation

Shopping list...

The partici

General

	E_beam		η	Comp	E*	Detectors
¹⁶ O + ¹¹⁶ Sn	130 MeV 250 MeV	8 AMeV 15.8 AMeV	0.76	¹³² Ce	100 206	GARF FW+ PPAC
¹⁶ O+ ¹¹⁶ Sn	192 MeV	12 AMeV	0.76	¹³² Ce	155	GARF FW+ PHOSWICH
¹⁶ O+ ⁶⁵ Cu	256 MeV	16 AMeV	0.60	⁸¹ Rb	209	GARF FW+BW+ RCo
¹⁹ F + ⁶² Ni	304 MeV	16AMeV	0.53	⁸¹ Rb	240	GARF FW+BW+ RCo
¹⁹ F + ⁶³ Cu	304 MeV	16 AMeV	0.52	⁸² Sr	243	GARF FW+BW+ RCo

Experimental setup: GARFILED + ...

Microstrip Drift Chamber + CsI(TI)

Double stage ΔE-E: Micro Strip Gas Counter (MSGC)+ CsI(TI) telescopes (in total 180+180 for the 2 chambers)

Forward Chamber 29°<θ<83° 0°< φ<70° 110°< φ<360°

Backward Chamber 97°<0<151° 0°<¢<360°

F. Gramegna et al., IEEE Nucl. Sci. Symp. Conf. Proc. 2, 1132 (2004) A.Moroni et al. NIM A556 (2006) 516 M. Bruno et al., EPJ A 49 (2013) 128

Experimental results (2002-2003): ¹⁶O + ¹¹⁶Sn 130,250 MeV (8, 16 AMeV)

PSPPAC

Beam

FWV +

T. Marchi – International Workshop on Multi facets of Eos and Clustering – Catania, 6-9 May 2014

Evaporative (statistical) emission:

Statistical decay of a Compound Nucleus is analyzed using modified PACE2 Monte Carlo code, with level density parametrization [A.V. Ignatyuk et al. Sov. J.Nucl. Phys. 29 (1979) 450], decay competition probability (n, p, a, g or fission), kinetic energy of emitted particles, binding energy, transmission coefficients, angular momentum.

- Insertion of non-equilibrium stage in the fusion reaction
- All the process probabilities are calculated within the Hauser-Feshbach model

Pre-equilibrium emission:

tive collisions

Ent partici

The relaxation process in the nuclear system after fusion reaction is described by the Hybrid exciton model based on Griffin model [J.J.Griffin Phys. Rev. Lett.17 (1966) 478]. The state of nuclear system produced in the collision is determined by the exciton number n=p+ h, where p is the number of valence particles over the Fermi energy and h the number of holes located under the Fermi energy, and by excitation energy E*.

The exciton number can be determined from the empirical trend
 [N.Cindro et al. Phys. Rev. Lett. 66 (1991) 868; E. Běták Fizika B12 (2003) 11]

Model Parameters:

$n_0 = p_0 + h_0$	Number of excitons
k	100 – 800 MeV ³
g = 6a/ π^{2}	Level density parameter

O.V. Fotina et al. Int. Journ. Mod. Phys. E19 (2010) 1134 D.O. Eremenkoet al. Phys Atom. Nucl. 65 (2002) 18 O.V. Fotina et al. Phys. Atom. Nucl. 73 (2010) 1317c

Comparison with the model (130 MeV)

Comparison with the model (250 MeV)

singtive Collisions

Genera

Evaporative (statistical) emission:

Statistical decay of a Compound Nucleus is analyzed using modified PACE2 Monte Carlo code, with level density parametrization [A.V. Ignatyuk et al. Sov. J.Nucl. Phys. 29 (1979) 450], decay competition probability (n, p, a, g or fission), kinetic energy of emitted particles, binding energy, transmission coefficients, angular momentum.

- Insertion of non-equilibrium stage in the fusion reaction
- All the process probabilities are calculated within the Hauser-Feshbach model

Pre-equilibrium emission:

The relaxation process in the nuclear system after fusion reaction is described by the Hybrid exciton model based on Griffin model [J.J.Griffin Phys. Rev. Lett.17 (1966) 478]. The state of nuclear system produced in the collision is determined by the exciton number n=p+ h, where p is the number of valence particles over the Fermi energy and h the number of holes located under the Fermi energy, and by excitation energy E*.

 The exciton number can be determined from the empirical trend [N.Cindro et al. Phys. Rev. Lett. 66 (1991) 868; E. Běták Fizika B12 (2003) 11]

Clustering:

tive collisions

Pre-formation probability of cluster and exciton energies for cluster/light ion induced reactions [M. Blann et al. Phys Rev. C 62 (2000) 034604]

Adding α -clusters preformation probability to the decay model:

le collisions

Experimental results (2002-2003) – with clustering:

We collisions

250 MeV ¹⁶**O** + ¹¹⁶**Sn** α -particles spectra

- --- No α -clustering in ¹⁶O
 - 10% α -clustering in ¹⁶O
 - 50% α -clustering in ¹⁶O

Exp

"Dynamic Dipole": GARFIELD (digital) + Phoswich

T. Marchi – International Workshop on Multi facets of Eos and Clustering – Catania, 6-9 May 2014

Genera

Experimental results (192 MeV):

Experimental results (192 MeV):

Comparison with the Hybrid Exciton Model - protons (192 MeV):

tive collisions

Sht partici

General

Comparison with the Hybrid Exciton Model – α -particles (192 MeV):

ative collisions

Bht particles General.

"ACLUST 2013": GARFIELD + Rco

¹⁶O + ⁶⁵Cu E_b = 256 MeV (16 MeV/u) ¹⁹F + ⁶²Ni E_b = 304 MeV (16 MeV/u)

tive collisions

CN ⁸¹Rb* E*(¹⁶O) = 209 MeV E*(¹⁹F) = 240 MeV

Comparing the light charged particles emitted in fusion reactions where an α -cluster projectile (¹⁶O) and projectile without α clusterization (¹⁹F) are used. The two systems have the same projectile velocity.

From Cabrera systematics the preequilibrium emission is mainly dependent on the projectile velocity [J. Cabrera et al. Phys. Rev. C68 (2003) 034613]

Unified Code, O.V. Fotina, Moscow State University

Genera

Experimental Proton spectra in Lab

h_ei_prot_gate0_g122

50

10 20 30

¹⁶O + ⁶⁵Cu ¹⁹F + ⁶²Ni

h_ei_prot_gate0_g124

Experimental a particles spectra in Lab

tive collisions

parti

General

_ ¹⁶O + ⁶⁵Cu _ ¹⁹F + ⁶²Ni

CM Spectra at different angles

ative collisions

Very **small** pre-equilibrium contribution in proton spectra

Larger pre-equilibrium contribution in ¹⁹F induced reaction α -spectra with respect to ¹⁶O reaction

10-3

20

E_{CM}

Alpha in CM

h_ei_alpha_gate0_g121_CM

¹⁶**O** + ⁶⁵**Cu**

25.92

tegral 2.47

h_ei_alpha_gate0_g121_CM

¹⁹F + ⁶²Ni

10-3

20

40

60

80

100

rtive collisions

Darticle

General,

Comparison with Hybrid Exciton Model:

 α – particles

Comparison with Hybrid Exciton Model:

Summary:

 \geq

- > Preliminary results seem <u>NOT to confirm</u> the predicted **difference** between the two systems (16O+65Cu and 19F+62Ni) due to α -clustering effects in ¹⁶O induced reactions.
 - Using the same parameters the **Hybrid Exciton Model** describes resonably the α -particles but strongly overestimates the protons. **Cluster preformation** has to be considered to take into account the alpha – protons emission competition.

Summary:

Analysis is in progress....

- To extract energy spectra for all particles **p**, **d**, **t**, ³He, α also for the most <u>forward angles</u> of the Rco where the pre-equilibrium emission and any possible difference are maximized.
- To study **angular** and **energy correlations** of the emitted particles event-by-event.
- To perform more **selective coincidences** with **evaporation residues**, as a function of their energies and of the detected angles.
- To **complete** the Hybrid Exciton Model **calculations** for all particles and for all the measured angles.

Outlook: SPES

General,

F. Gramegna¹, D. Fabris², <u>T. Marchi¹</u>, M. Degerlier³, V.L. Kravchuk⁴,
M. Cinausero¹, S. Appannababu¹, M. Bruno⁵, M. D'Agostino⁵, L. Morelli⁵,
G. Casini⁶, S. Barlini⁶, M. Bini⁶, A. Olmi⁶, G. Pasquali⁶, S. Piantelli⁶,
G. Poggi⁶, S. Valdrè⁶, O.V. Fotina⁷, S.A. Goncharov⁷, D.O. Eremenko⁷,
O.A. Yuminov⁷, Yu.L. Parfenova⁷, S.Yu. Platonov⁷, V.A. Drozdov⁷, E. Vardaci⁸

¹Laboratori Nazionali di Legnaro, Legnaro (PD), Italy

²INFN sezione di Padova, Padova, Italy
 ³University of Nevsehir, Science and Art Faculty, Physics Department, Nevsehir, Turkey
 ⁴National Research Center "Kurchatov Institute", Moscow, Russia
 ⁵Dipartimento di Fisica, Università di Bologna and INFN sezione di Bologna, Bologna, Italy
 ⁶Dipartimento di Fisica, Università di Firenze and INFN sezione di Firenze, Firenze, Italy
 ⁷Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow, Russia
 ⁸ Dipartimento di Scienze Fisiche, Università di Napoli "Federico II", Napoli, Italy

Experimental results (2002-2003) – with clustering:

250 MeV ¹⁶O + ¹¹⁶Sn proton spectra

tive collisions

Moving source analysis

ve collisions

1) Evaporative (statistical equilibrium) contribution

$$\frac{d^2 N_2}{d\Omega dE} = \frac{N_2}{4\pi T_2^2} (E - V_{c_2}) e^{\frac{-(E - V_{c_2})}{T_2}} (1 + \alpha_2 P_2(\cos\theta))$$

 $N_{2'}$, $T_{2'}$, V_{c2} – yield, temperature, Coulomb energy parameter for the evaporative particles

2) Pre-equilibrium contribution

$$\frac{d^2 N_1}{d\Omega dE} = \frac{N_1}{2(\pi T_1)^{3/2}} \sqrt{(E - V_{c1})} e^{\frac{-(E - V_{c1})}{T_1}}$$

N₁, T₁, V_{c1} – yield, temperature, Coulomb energy parameter for the preequilibrium particles

