

Cluster features of stable and unstable nuclei in p-shell region

Y. Kanada-En'yo (Kyoto)

- **1. Introduction**
- 2. Cluster gas, chain states
- 3. Cluster structures in Be isotopes
- 4. Summary

1. Introduction

 \square

Cluster & Mean field

Coexistence of cluster and MF features

Cluster structures in stable and unstable nuclei

Typical cluster structures known in stable nuclei

In heavier-mass nuclei

- ✓ SuperDeformation(SD)
 ✓ Molecular Personance
- ✓ Molecular Resonance
- ✓ α-cluster
 - ³²S: O-O, Si-α
 ⁴⁰Ca: Si-C, Ar-α
 ⁴⁴Ti: Si-O, Ca-α
 ²⁸Si: Si-C (MR)
 ⁵⁶Ni: Si-Si (MR)

In neutron-rich nuclei

Cluster gas, linear chain

cluster crystalization

triangle

Itagaki et al., Von Oertzen et al.

Price et al. Suhara et al

^{12,14,15,16}**C*** linear chain

Nuclear matter

 α -condensation

Roepche et al.

dineutron-cond.

(8)

(8)

 \bigcirc

 \bigcirc

8

BEC-BCS matsuo et al.

Rich cluster phenomena in nuclear systems

as functions of proton&neutron numbers and excitation energy

- ✓ Cluster formation/breaking in low-lying states
- Cluster excitation and resonances
- ✓ Molecular Bond in neutron-rich nuclei
- ✓ Many clusters : cluster gas, chain
- ✓ New types of cluster
 - t, ⁴He, ¹²C, ¹⁶O,
 - ^{6,8}He+He in Be, ¹⁰Be+ α in ¹⁴C,
 - ¹⁴C+α in ¹⁸O, ¹⁸O+α in ²²Ne

Rich cluster phenomena in nuclear systems

as functions of proton&neutron numbers and excitation energy

- ✓ Cluster formation/breaking in low-lying states
- ✓ Cluster excitation and resonances
- ✓ Molecular Bond in neutron-rich nuclei
- ✓ Many clusters : cluster gas, chain
- ✓ New types of cluster

Theoretical framework that can describe those Cluster phenomena

AMD: antisymmetrized molecular dynamics

2. A theoretical model: AMD

AMD method for structure study

$$\begin{array}{l} \hline \mbox{Energy Variation} \\ \delta \frac{\langle \Phi | H | \Phi \rangle}{\langle \Phi | \Phi \rangle} = 0 \\ H^{\rm eff} = \sum_{i=1} t_i + \sum_{i < j} v_{ij}^{\rm eff} + \sum_{i < j < k} v_{ijk}^{\rm eff} \end{array}$$

3. Some topics of cluster phenomena

Topics of cluster phenomena

• Cluster gas, chain states

Cluster structures in Be isotopes

Topics of cluster phenomena

• Cluster gas, chain states

Cluster structures in Be isotopes

Cluster states in excited states

Problems

✓ Cluster gas in other nuclei✓ rotation of clusters gas?

2α +t cluster in ¹¹B(3/2₃)

triangle? 12**C** 0_{3}^{+} $2_{2}^{+} 3_{1}^{-}$ 7.65 MeV ⁸Be+α cluster gas of 3α

+

0,

AMD by Y.K-E., Suhara

Rotational(?) band from cluster gas

Structure change with spin increasing -> change of moment of inertia

Topics of cluster phenomena

• Cluster gas, chain states

Cluster structures in Be isotopes

Cluster structures in neutron-rich Be

Cluster structures in neutron-rich Be

Molecular orbital

Atomic: cluster resonance He+He resonances in Be He+t res. In ⁹Li

MO bond

Vanishing of magic number in ¹¹Be, ¹²Be, ¹³Be

Normal: shell-model like

MO bond and vanishing of magic number N=8 in Be

Molecular orbital(MO) bond in Be

vanishing of magic number in ¹¹Be, ¹²Be, ¹³Be

Recent exp. for ¹³Be Kondo et al. PLB690(2010)

Vanishing of N=8 magic number in neutron-rich Be

Exp:lwasaki et al., Navin et al., Pain et all. Kondo et al.

¹²Be:Vanishing of magic number N=8

Deformed ground state with d-wave components

Experiments: Iwasaki et al., Navin et al., Pain et all.

AMD result of ¹²Be

VAP calculation with AMD method

positive parity states with normal spins

Y.Kanada-En'yo et al., PRC 68, 014319 (2003)

Breaking of N=8 magicity Formation of 2α+molecular orbitals

¹²Be

Parity inversion of ¹¹Be(1/2+,1/2-)

¹³Be spectra

¹³Be: unbound
 ¹³Be spectra has been measured by 1n knock-out reactions at GSI(Simon et al. 2007) and RIKEN(Kondo et al.,2010)

Be isotopes calculated with AMD+VAP

Eff. interactions MV1(m=0.65)+G3RS force

- set(1) : u=3700 MeV (Is force)
- set(2) : u=2500 MeV

AMD calculation using set(1) interaction:

- •1/2+ ground state in 11Be.
- •Intruder ground state in 12Be.
- •lowest 1/2- state in 13Be.

Cluster structures in Be isotopes

Intruder states are well deformed states with developed 2-alpha cores. Similar structures in Be isotopes.

Cluster resonances in Be and 9Li

3. ⁶He+t cluster states in ⁹Li

 \square

cluster resonances

Developed ⁶He+³H cluster states in ⁹Li

Cluster structures in ¹⁰Be and ⁹Li

Cluster aspects in ground and excited states

Cluster gas, chain states

- Cluster gas often appears in general nuclei
- Cluster gas is not stable in the rotation
- Chain structure of alpha clusters in neutron-rich C

Cluster structures in Be isotopes

- > 2α clusters and valence neutron
- MO bond structure and breaking of magic number N=8
- \succ 6He+ α Cluster resonances , and 6He+t resonances