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Collective excitations in neutron rich nuclei contain valuable information which E1 ISOVECTOR STRENGTH RELATED OBSERVABLES, NEUTRON SKIN AND THE
help to investigate the isospin dependence of the nuclear equation of state [1]. SYMMETRY ENERGQY

By employing relativistic energy density functional (EDF) theory in describing
both the nuclear matter properties and collective motion in finite nuclei, relevant

observables related to isovector dipole excitations can be identified by means of Energy per nucleon of asymmetric nuclear matter: Characteristics of the isovector interaction channel

statistical covariance analysis [2].
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Constraining J and L: — identifying observables correlated with and sensitive to them

RELATIVISTIC ENERGY DENSITY FUNC_ ARnp = /(r5) —1/{r5)  neutron skin thickness — strong linear correlation with J [4], but difficult to measure in a model independent way
TIONAL THEORY Observables related to E1 isovector excitations — GDR peak energy, strength distribution and moments my(T,J) = > wEBT(J,w,)

Dirac nucleons interacting via meson and photon exchange

Effective interaction - fitting of coupling constants Family of DD-ME interactions spanning J=30, 32, 34, 36, 38 [
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- Fig 3 Right : Correlation between neutron skin thickness in ?®Pb and nuclear

matter properties, energies of various excitation modes and excitation strength

Diagonalization of the RQRPA equation system yields discrete energy excita- 30 related observables for overall energy range and constrained to the pygmy region.
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SYSTEMATIC STUDY OF THE DIPOLE RESPONSE FOR THE TIN ISOTOPE CHAIN - S412 EXPERIMENT AT GSI

3
Fragment Separator = R'B - Setup Fig 8 Setup for the S412 experiment. Excitation energy is obtained from

a kinematically complete measurement of all outgoing particles (invariant
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The cross section for Coulomb induced nuclear breakup reactions is
expressed in terms of the real photon absorption strength distribution via
| Plastic scintillator virtual photon method (for E1 excitations):
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: : : This method excites predominantly El
- b y where ngi(E) is the number of virtual phonons of given energy.
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