Production of doubly magic nucleus ¹⁰⁰Sn in fusion reactions via particle and cluster emission channels

Sh. A. Kalandarov

Bogolyubov Laboratory for Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Russia

Production of doubly magic nucleus 100Sn in fusion reactions

GANIL experiment(Phys. Rev. Lett. V77, 2400(1996))

⁵⁰Cr+⁵⁸Ni reaction at 5.1MeV/nucleon produce ¹⁰⁸Te(E_{ex}=92MeV at J=0)

 108 Te → 100 Sn+α4n with **40nb** cross section.

Alternative method was suggested in ORNL by A. Korgul et.al.(Phys.Rev.C77,034301, 2008)

⁵⁸Ni+⁵⁴Fe reaction at 240MeV produce ¹¹²Xe((E_{ex}=58MeV at J=0))

 112 Xe $_$ 108 Xe+4n with \sim 1nb cross section.

 108 Xe- 104 Te- 100 Sn α decay chain

Fig. 1. Schematic illustration of the compound nucleus formation process within the framework of the MDM- and DNS-concept.

Fig. 28. Calculated (solid lines) and measured [41] (symbols) isotopic distributions of products originating from the 84 Kr + 27 Al reaction at $E_{lab} = 10.6$ MeV/nucleon that are indicated in the figure.

Sh. A. Kalandarov et al.,

PHYSICAL REVIEW C 82, 044603 (2010)

PHYSICAL REVIEW C 83, 054619 (2011)

PHYSICAL REVIEW C 84, 054607 (2011)

PHYSICAL REVIEW C 84, 064601 (2011)

Some results

FIG. 2: Calculated excitation functions for production of ¹⁰⁰Sn(■), ¹⁰¹Sn (□), ¹⁰²Sn (▲), ¹⁰³Sn (Δ) in indicated fusion reactions by xn decay channels.

FIG. 5: Calculated excitation functions for production of ¹⁰⁰Sn(■), ¹⁰¹Sn (□), ¹⁰²Sn (▲), ¹⁰³Sn (△) in indicated fusion reactions by cluster emission channels. See the text for the details.

Potential energy of DNS

$$U(R, Z, A, J) = B_1 + B_2 + V(R, Z, A, \beta_1, \beta_2, J) - [B_{12} + E_{12}^{rot}(J)],$$

$$V(R, Z, A, \beta_1, \beta_2, J) = V_C(R, Z, A, \beta_1, \beta_2) + V_N(R, Z, A, \beta_1, \beta_2) + \frac{\hbar^2 J(J+1)}{2\Im(R, A, \beta_1, \beta_2)}$$

$$V_N = \int \rho_1(\mathbf{r_1}) \rho_2(\mathbf{R} - \mathbf{r_2}) F(\mathbf{r_1} - \mathbf{r_2}) d\mathbf{r_1} d\mathbf{r_2},$$

where $F(\mathbf{r_1} - \mathbf{r_2}) = C_0[F_{\text{in}}\frac{\rho_0(\mathbf{r_1})}{\rho_{00}} + F_{\text{ex}}(1 - \frac{\rho_0(\mathbf{r_1})}{\rho_{00}})]\delta(\mathbf{r_1} - \mathbf{r_2})$ is the Skyrme-type density-depending effective nucleon-nucleon interaction, which is known from the theory of finite Fermi systems [28], and $\rho_0(\mathbf{r}) = \rho_1(\mathbf{r}) + \rho_2(\mathbf{R} - \mathbf{r})$, $F_{\text{in,ex}} = f_{\text{in,ex}} + f'_{\text{in,ex}}\frac{(N-Z)(N_2-Z_2)}{(N+Z)(N_2+Z_2)}$. Here, $\rho_1(\mathbf{r_1})$ and $\rho_2(\mathbf{r_2})$, and $N_2(Z_2)$ are the nucleon densities of, respectively, the light and the heavy nuclei of the DNS, and neutron (charge) number of the heavy nucleus of the DNS.

$$\begin{split} \rho_{i}(\mathbf{r}) &= \frac{\rho_{00}}{1 + \exp((r - R_{i}(\theta'_{i}, \varphi'_{i}))/a_{0i})} & R_{i} = R_{0i}(1 + \beta_{i}Y_{20}(\theta'_{i}, \varphi'_{i})), \\ \Im(R, A, \beta_{1}, \beta_{2}) &= k_{0}(\Im_{1} + \Im_{2} + \mu R^{2}), & \Im_{i} &= \frac{1}{5}m_{0}A_{i}\left(a_{i}^{2} + b_{i}^{2}\right), \\ a_{i} &= R_{0i}\left(1 - \frac{\beta_{i}^{2}}{4\pi}\right)\left(1 + \sqrt{\frac{5}{4\pi}}\beta_{i}\right), \\ b_{i} &= R_{0i}\left(1 - \frac{\beta_{i}^{2}}{4\pi}\right)\left(1 - \sqrt{\frac{5}{16\pi}}\beta_{i}\right). \\ V_{C}(R, \alpha_{1}, \alpha_{2}) &= \frac{Z_{1}Z_{2}}{R}e^{2} + \frac{Z_{1}Z_{2}}{R^{3}}e^{2}\left\{\left(\frac{9}{20\pi}\right)^{1/2}\sum_{i=1}^{2}R_{0i}^{2}\beta_{2}^{(i)}P_{2}(\cos\alpha'_{i}) + \frac{3}{7\pi}\sum_{i=1}^{2}R_{0i}^{2}\left[\beta_{2}^{(i)}P_{2}(\cos\alpha'_{i})\right]^{2}\right\}, \end{split}$$

Here, a_T =0.56 fm and a_P = a_T -0.015 $|\eta|$ are the diffusenesses of the DNS heavy and light nuclei, respectively (light nucleus has small diffuseness), and $R_{P(T)}$ = $r_0A_{P(T)}^{1/3}$ (r_0 =1.16 fm) is the radius of nucleus "P" ("T"). Deformed nuclei are treated in the pole-to-pole orientation.

Nucleon exchange between DNS nuclei

$$\begin{split} \frac{d}{dt}P_{Z,N}(t) &= \Delta_{Z+1,N}^{(-,0)}P_{Z+1,N}(t) + \Delta_{Z-1,N}^{(+,0)}P_{Z-1,N}(t) \\ &+ \Delta_{Z,N+1}^{(0,-)}P_{Z,N+1}(t) + \Delta_{Z,N-1}^{(0,+)}P_{Z,N-1}(t) \\ &- (\Delta_{Z,N}^{(-,0)} + \Delta_{Z,N}^{(+,0)} + \Delta_{Z,N}^{(0,-)} + \Delta_{Z,N}^{(0,+)} \\ &+ \Lambda_{Z,N}^{qf} + \Lambda_{Z,N}^{fis})P_{Z,N}(t), \end{split}$$

With the transport coefficients:

$$\begin{split} \Delta_{Z,N}^{(\pm,0)}(\Theta) &= \frac{1}{\Delta t} \sum_{P,T}^{Z} |g_{PT}|^{2} n_{P}^{T}(\Theta) [1 - n_{T}^{P}(\Theta)] \\ &\times \frac{\sin^{2}[\Delta t (\epsilon_{P} - \epsilon_{T})/2\hbar]}{(\epsilon_{P} - \epsilon_{T})^{2}/4}, \end{split}$$

$$\begin{split} \Delta_{Z,N}^{(0,\pm)}(\Theta) &= \frac{1}{\Delta t} \sum_{P,T}^{N} |g_{PT}|^2 n_P^T(\Theta) [1 - n_T^P(\Theta)] \\ &\times \frac{\sin^2[\Delta t (\epsilon_P - \epsilon_T)/2\hbar]}{(\epsilon_P - \epsilon_T)^2/4}, \end{split}$$

$$\Lambda_{Z,N}^{qf}(\Theta) = \sum_{n} \Lambda_{Z,N}^{qf}(n) \Phi_{Z,N}(n,\Theta),$$

$$\Lambda_{Z,N}^{fis}(\Theta) = \sum_{n} \Lambda_{Z,N}^{fis}(n) \Phi_{Z,N}(n,\Theta).$$

Adamian G.G. et al, Physics of Atomic Nuclei, 55, 3(1992)

$$g_{PT}(R) = \frac{1}{2} \int d\mathbf{r} \psi_T^*(\mathbf{r}) [U_T(\mathbf{r}) + U_P(\mathbf{r} - \mathbf{R})] \psi_P(\mathbf{r} - \mathbf{R})$$

$$\begin{split} \Lambda_{Z,N}^{qf}(\Theta) &= \frac{\omega}{2 \, \pi \, \omega^B q f} \Bigg(\sqrt{\left(\frac{\Gamma}{2 \, \hbar}\right)^2 + (\omega^B q f)^2} - \frac{\Gamma}{2 \, \hbar} \Bigg) \\ &\times \exp \Bigg(- \frac{B \, q f(Z,N)}{\Theta(Z,N)} \Bigg), \end{split}$$

Phenomenological approach:

$$\Delta_{z,A} = \lambda_{zz} \cdot \rho_z$$

$$\lambda_{zz'} = 2 \pi k \frac{R1R2}{R1 + R2} \frac{1}{(\rho_z \rho_z')}$$