Superconductivity, Superfluidity and holography

Alberto Salvio

Department of Theoretical Physics and Institute of Theoretical Physics, Autonoma University of Madrid, Spain and Scuola Normale Superiore di Pisa, Italy

12 November 2012, Laboratori Nazionali del Gran Sasso

Partly based on

Domènech, M. Montull, A. Pomarol, A. S. and P. J. Silva, JHEP 1008 (2010) 033 arXiv:1005.1776
 M. Montull, O. Pujolas, A. S. and P. J. Silva, Phys. Rev. Lett. 107 (2011) 181601 arXiv:1105.5392
 M. Montull, O. Pujolas, A. S. and P. J. Silva, JHEP 1204 (2012) 135 arXiv:1202.0006
 A. S. JHEP 1209 (2012) 134 arXiv:1207.3800

1 Introduction

- Effective Field Theory Description
- Comparison between superconductors and superfluids

Introduction

- Effective Field Theory Description
- Comparison between superconductors and superfluids

2 Holographic model (gauge/gravity correspondence)

- Motivations for holographic superconductors
- Holography at finite temperature and density and phase transitions
- Conductivity

Introduction

- Effective Field Theory Description
- · Comparison between superconductors and superfluids

2 Holographic model (gauge/gravity correspondence)

- Motivations for holographic superconductors
- · Holography at finite temperature and density and phase transitions
- Conductivity

Holographic Superfluids vs Superconductors

- Dynamical gauge fields in holography
- Vortices

Introduction

- Effective Field Theory Description
- · Comparison between superconductors and superfluids

2 Holographic model (gauge/gravity correspondence)

- Motivations for holographic superconductors
- · Holography at finite temperature and density and phase transitions
- Conductivity

Holographic Superfluids vs Superconductors

- Dynamical gauge fields in holography
- Vortices

Holographic insulator/superconductor transitions: motivated by cuprates

- The compactified higher dimensional model
- An alternative to compactification: the dilaton

Introduction

- Effective Field Theory Description
- · Comparison between superconductors and superfluids

2 Holographic model (gauge/gravity correspondence)

- Motivations for holographic superconductors
- · Holography at finite temperature and density and phase transitions
- Conductivity

Holographic Superfluids vs Superconductors

- Dynamical gauge fields in holography
- Vortices

Holographic insulator/superconductor transitions: motivated by cuprates

- The compactified higher dimensional model
- An alternative to compactification: the dilaton

Holographic model (gauge/gravity correspondence) Holographic Superfluids vs Superconductors Holographic insulator/superconductor transitions: motivated by cuprates Conclusions

Effective Field Theory Description Comparison between superconductors and superfluids

Effective theories of superfluids and superconductors

along the lines of [Weinberg, 1986]

A superconductor (SC) is a material in which $U(1)_{em}$ is spontaneously broken.

Simplest field content:

$$a_{\mu}\equiv\left(a_{0},a_{i}
ight),~\Phi_{\mathrm{cl}}$$

For time-independent configurations and without electric fields

Free energy
$$= F = \int d^{d-1} x \mathcal{L}_{eff} (\mathcal{F}_{ij}^2, |D_i \Phi_{cl}|^2, |\Phi_{cl}|, ...)$$

 $\mathcal{F}_{ij} \equiv \partial_i a_j - \partial_j a_i, \quad D_i \Phi_{cl} \equiv (\partial_\mu - i a_\mu) \Phi_{cl}$
 $J^i = -\frac{\delta F}{\delta a_i}$

Holographic model (gauge/gravity correspondence) Holographic Superfluids vs Superconductors Holographic insulator/superconductor transitions: motivated by cuprates Conclusions

Effective Field Theory Description Comparison between superconductors and superfluids

Effective theories of superfluids and superconductors

along the lines of [Weinberg, 1986]

A superconductor (SC) is a material in which $U(1)_{em}$ is spontaneously broken.

Simplest field content:

$$a_{\mu}\equiv\left(a_{0},a_{i}
ight),\,\,\Phi_{\mathrm{cl}}$$

For time-independent configurations and without electric fields

$$\textit{Free energy} = \textit{F} = \int d^{d-1}x \, \mathcal{L}_{\rm eff} \big(\mathcal{F}_{ij}^2, |D_i \Phi_{\rm cl}|^2, |\Phi_{\rm cl}|, ... \big)$$

$$\mathcal{F}_{ij} \equiv \partial_i a_j - \partial_j a_i, \quad D_i \Phi_{cl} \equiv (\partial_\mu - i a_\mu) \Phi_{cl}$$

$$J^{i} = -rac{\delta F}{\delta a}$$

For small enough fields we expect a Ginzburg-Landau (GL) free energy:

$$\begin{split} F_{\rm GL} &= \int d^{d-1} x \Big\{ \frac{1}{4g_0^2} \mathcal{F}_{ij}^2 + |D_i \Phi_{\rm GL}|^2 + V_{\rm GL}(|\Phi_{\rm GL}|) \Big\} \\ \Phi_{\rm GL} &= \textit{constant} \times \Phi_{\rm cl} \;, \quad V_{\rm GL} \equiv -\frac{1}{2\xi_{\rm GL}^2} |\Phi_{\rm GL}|^2 + b_{\rm GL} |\Phi_{\rm GL}|^4 \end{split}$$

Holographic model (gauge/gravity correspondence) Holographic Superfluids vs Superconductors Holographic insulator/superconductor transitions: motivated by cuprates Conclusions

Effective Field Theory Description Comparison between superconductors and superfluids

Effective theories of superfluids and superconductors

along the lines of [Weinberg, 1986]

A superconductor (SC) is a material in which $U(1)_{em}$ is spontaneously broken.

Simplest field content:

$$a_{\mu}\equiv\left(a_{0},a_{i}
ight),~\Phi_{\mathrm{cl}}$$

For time-independent configurations and without electric fields

$$\textit{Free energy} = \textit{F} = \int d^{d-1}x \, \mathcal{L}_{\rm eff} \big(\mathcal{F}_{ij}^2, |D_i \Phi_{\rm cl}|^2, |\Phi_{\rm cl}|, ... \big)$$

$$\mathcal{F}_{ij} \equiv \partial_i a_j - \partial_j a_i, \quad D_i \Phi_{cl} \equiv (\partial_\mu - i a_\mu) \Phi_{cl}$$

$$J^{i} = -rac{\delta F}{\delta a}$$

For small enough fields we expect a Ginzburg-Landau (GL) free energy:

$$F_{\rm GL} = \int d^{d-1}x \left\{ \frac{1}{4g_0^2} \mathcal{F}_{ij}^2 + |D_i \Phi_{\rm GL}|^2 + V_{\rm GL}(|\Phi_{\rm GL}|) \right\}$$

$$\Phi_{\rm GL} = constant \times \Phi_{\rm cl} , \quad V_{\rm GL} \equiv -\frac{1}{2\xi_{\rm GL}^2} |\Phi_{\rm GL}|^2 + b_{\rm GL} |\Phi_{\rm GL}|^4$$

non-dynamical $a_i \leftrightarrow$ superfluid limit

Holographic model (gauge/gravity correspondence) Holographic Superfluids vs Superconductors Holographic insulator/superconductor transitions: motivated by cuprates Conclusions

Effective Field Theory Description Comparison between superconductors and superfluids

Comparing superconductors with superfluids

	superfluids (SF)	superconductors (SC)
J _i	SF current density	EM current density
$arg(\Phi_{cl})$	SF velocity potential in the lab frame	condensate's phase
a _i	external velocity in the lab frame	EM vector potential

Holographic model (gauge/gravity correspondence) Holographic Superfluids vs Superconductors Holographic insulator/superconductor transitions: motivated by cuprates Conclusions

Superfluid vortices

Effective Field Theory Description Comparison between superconductors and superfluids

take the vortex Ansatz: $a_{\phi} = a_{\phi}(r)$, $\Phi_{cl} = e^{in\phi}\psi_{cl}(r)$, n = integer(r, ϕ) are the polar coordinates restricted to $0 \le r \le r_m$, $0 \le \phi < 2\pi$

 a_{ϕ} is not dynamical (it is an external angular velocity performed on the superfluid):

This is implemented by working in a *rotating frame* with a constant angular velocity $\Omega = a_{\phi}/r^2$. In going from the static to the rotating frame the angular velocity of the superfluid is changed accordingly: $v_{\phi} \rightarrow v_{\phi} - \Omega r^2$. Then $J_{\phi} \propto (v_{\phi} - \Omega r^2)$.

Holographic model (gauge/gravity correspondence) Holographic Superfluids vs Superconductors Holographic insulator/superconductor transitions: motivated by cuprates Conclusions

Superfluid vortices

Effective Field Theory Description Comparison between superconductors and superfluids

take the vortex Ansatz: $a_{\phi} = a_{\phi}(r)$, $\Phi_{cl} = e^{in\phi}\psi_{cl}(r)$, n = integer(r, ϕ) are the polar coordinates restricted to $0 \le r \le r_m$, $0 \le \phi < 2\pi$

 a_{ϕ} is not dynamical (it is an external angular velocity performed on the superfluid):

This is implemented by working in a *rotating frame* with a constant angular velocity $\Omega = a_{\phi}/r^2$. In going from the static to the rotating frame the angular velocity of the superfluid is changed accordingly: $v_{\phi} \rightarrow v_{\phi} - \Omega r^2$. Then $J_{\phi} \propto (v_{\phi} - \Omega r^2)$.

Superfluids \leftrightarrow superconductors in the limit in which the EM field is frozen

In the Ginzburg-Landau theory the limit is $g_0 \rightarrow 0$ while keeping the external magnetic field $B = \partial_r a_{\phi}/r$ constant. In this limit

$$\Omega \leftrightarrow B/2 \;,\;\; L_{\perp} \leftrightarrow 2M$$

Holographic model (gauge/gravity correspondence) Holographic Superfluids vs Superconductors Holographic insulator/superconductor transitions: motivated by cuprates Conclusions

Superfluid vortices

Effective Field Theory Description Comparison between superconductors and superfluids

take the vortex Ansatz: $a_{\phi} = a_{\phi}(r)$, $\Phi_{cl} = e^{in\phi}\psi_{cl}(r)$, n = integer(r, ϕ) are the polar coordinates restricted to $0 \le r \le r_m$, $0 \le \phi < 2\pi$

 a_{ϕ} is not dynamical (it is an external angular velocity performed on the superfluid):

This is implemented by working in a *rotating frame* with a constant angular velocity $\Omega = a_{\phi}/r^2$. In going from the static to the rotating frame the angular velocity of the superfluid is changed accordingly: $v_{\phi} \rightarrow v_{\phi} - \Omega r^2$. Then $J_{\phi} \propto (v_{\phi} - \Omega r^2)$.

Superfluids \leftrightarrow superconductors in the limit in which the EM field is frozen

In the Ginzburg-Landau theory the limit is $g_0 \rightarrow 0$ while keeping the external magnetic field $B = \partial_r a_{\phi}/r$ constant. In this limit

$$\Omega \leftrightarrow B/2 \;,\;\; L_{\perp} \leftrightarrow 2M$$

For
$$\Omega \simeq \Omega_c$$

Holographic model (gauge/gravity correspondence) Holographic Superfluids vs Superconductors Holographic insulator/superconductor transitions: motivated by cuprates Conclusions

Effective Field Theory Description Comparison between superconductors and superfluids

Superconductor vortices

take the vortex Ansatz: $a_{\phi} = a_{\phi}(r)$, $\Phi_{cl} = e^{in\phi}\psi_{cl}(r)$, n = integer(r, ϕ) are the polar coordinates restricted to $0 \le r \le r_m$, $0 \le \phi < 2\pi$.

A superconducting plane probed by an external field *H* orthogonal to the plane

 $H \neq B$ as the magnetic field is dynamical

Holographic model (gauge/gravity correspondence) Holographic Superfluids vs Superconductors Holographic insulator/superconductor transitions: motivated by cuprates Conclusions

Effective Field Theory Description Comparison between superconductors and superfluids

Comparing superconductors with superfluids: vortices

For superconductor vortices, the dynamics of a_i is crucial

	superfluids	superconductors
field behavior	$\psi_{ m cl} \stackrel{B=0}{\overset{large r}{\simeq}} \psi_{\infty} \left(1 - n^2 rac{\xi^2}{r^2} ight)$	$\psi_{cl} \stackrel{\text{large } r}{\simeq} \psi_{\infty} + \frac{\psi_{1}}{\sqrt{r}} e^{-r/\xi'}$ $a_{\phi} \stackrel{\text{large } r}{\simeq} n + a_{1} \sqrt{r} e^{-r/\lambda'}$
quantization of $\Phi(B)$	No	yes: $\int dr rB = n$
vortex energy	$F_n - F_0 \stackrel{\text{large } r_m}{\sim} n^2 \ln \frac{r_m}{\xi} - \frac{n}{2} B r_m^2$	finite as $r_m \to \infty$
1st critical field	$H_{c1} \stackrel{large r_m}{\simeq} rac{2}{r_m^2} \ln rac{r_m}{\xi}$	\neq 0 as $r_m \rightarrow \infty$
2nd critical field	$H_{\rm C2} = \frac{1}{2\xi_{\rm GL}^2}$	$H_{\rm C2} = \frac{1}{2\xi_{\rm GL}^2}$

Holographic model (gauge/gravity correspondence) Holographic Superfluids vs Superconductors

Holographic insulator/superconductor transitions: motivated by cuprates Conclusions

Now Holography

Motivations for holographic superconductors Holography at finite temperature and density and phase transitions Conductivity

WHY?

Holographic model (gauge/gravity correspondence) Holographic Superfluids vs Superconductors Holographic insulator/superconductor transitions: motivated by cuprates Conclusions Motivations for holographic superconductors Holography at finite temperature and density and phase transitions Conductivity

The gauge/gravity correspondence and its motivations

The goal: describe **strongly** coupled systems by using a **weakly coupled** model with (at least) one extra dimension

Classic example: the AdS/CFT correspondence [Maldacena, 1997]

Type II B string theory on $AdS_5 \times S^5$

figures of [Mateos, 2007]

 \leftrightarrow

classical limit of string theory

 \leftrightarrow

 $N_c \to \infty$ $N_c \to \infty$ $\lambda = \sigma^2$

classical limit and particle approximation

 $N_c \rightarrow \infty, \lambda \equiv g_{YM}^2 N_c \rightarrow \infty$ (not perturbative)

More recently: Phenomenological applications of holography to

- Condensed matter: for a review see for example [Hartnoll, 2009]
- To Quantum Chromodynamics [Da Rold, Pomarol, 2005; Erlich, Katz, Son, Stephanov, 2005]
- Strongly coupled theories beyond the Standard Model; e.g. composite Higgs models [Agashe, Contino, Pomarol, 2004]

Holographic model (gauge/gravity correspondence) Holographic Superfluids vs Superconductors Holographic insulator/superconductor transitions: motivated by cuprates Conclusions Motivations for holographic superconductors Holography at finite temperature and density and phase transitions Conductivity

Motivations for holographic superconductors

- The most famous properties of superconductors follow from the spontaneous symmetry breaking of *U*(1)_{em} gauge invariance
- However, to understand how and when the spontaneous symmetry breaking of U(1)_{em} occurs one needs a microscopic theory
- BCS theory [Bardeen, Cooper, Schrieffer, 1957] describes "conventional superconductors" only
- There are also "unconventional superconductors"

e.g. some high-temperature superconductors (HTSC) which, unlike BCS theory, seem to involve strong coupling important applications; e.g. HTSC current leads

for the LHC magnets

Holographic model (gauge/gravity correspondence) Holographic Superfluids vs Superconductors Holographic insulator/superconductor transitions: motivated by cuprates Conclusions Motivations for holographic superconductors Holography at finite temperature and density and phase transitions Conductivity

Motivations for holographic superconductors

- The most famous properties of superconductors follow from the spontaneous symmetry breaking of U(1)_{em} gauge invariance
- However, to understand how and when the spontaneous symmetry breaking of U(1)_{em} occurs one needs a microscopic theory
- BCS theory [Bardeen, Cooper, Schrieffer, 1957] describes "conventional superconductors" only
- There are also "unconventional superconductors"

e.g. some high-temperature superconductors (HTSC) which, unlike BCS theory, seem to involve strong coupling important applications; e.g. HTSC current leads

for the LHC magnets

 \rightarrow apply the gauge/gravity correspondence

Holographic model (gauge/gravity correspondence)

Holographic Superfluids vs Superconductors Holographic insulator/superconductor transitions: motivated by cuprates Conclusions Motivations for holographic superconductors Holography at finite temperature and density and phase transitions Conductivity

The holographic model [Hartnoll, Herzog, Horowitz, 2008; Horowitz, Roberts, 2008]

When $\Psi = 0$ the system describes a conductor (with non-zero conductivity)

Holographic model (gauge/gravity correspondence)

Holographic Superfluids vs Superconductors Holographic insulator/superconductor transitions: motivated by cuprates Conclusions Motivations for holographic superconductors Holography at finite temperature and density and phase transitions Conductivity

The holographic model [Hartnoll, Herzog, Horowitz, 2008; Horowitz, Roberts, 2008]

$$ds^{2} = \frac{L^{2}}{z^{2}} \left[-f(z)dt^{2} + dx_{1}^{2} + \dots + dx_{d-1}^{2} \right] + \frac{L^{2}}{z^{2}f(z)}dz^{2}, \ f(z) = 1 - \left(\frac{z}{z_{h}}\right)^{d}$$

$$\begin{array}{ll} \mathcal{O} \leftrightarrow \Psi & & \mathsf{J}_{\mu} \leftrightarrow \mathsf{A}_{M} \\ \Psi|_{z=0} = s = \text{source of } \mathcal{O} & & \mathsf{A}_{\mu}|_{z=0} = a_{\mu} = \text{source of } \hat{\mathsf{J}}_{\mu} \end{array}$$

$$S = \frac{1}{g^2} \int d^{d+1}x \sqrt{-g} \left(-\frac{1}{4} \mathcal{F}_{MN}^2 - \frac{1}{L^2} |D_M \Psi|^2 \right)$$
$$J_{\mu} = \langle \hat{J}_{\mu} \rangle \propto z^{3-d} \mathcal{F}_{Z\mu}|_{Z=0} , \quad \Phi_{cl} = \langle \mathcal{O} \rangle \propto z^{1-d} D_Z \Psi^*|_{Z=0}$$

Holographic model (gauge/gravity correspondence)

Holographic Superfluids vs Superconductors Holographic insulator/superconductor transitions: motivated by cuprates Conclusions Motivations for holographic superconductors Holography at finite temperature and density and phase transitions Conductivity

The holographic model [Hartnoll, Herzog, Horowitz, 2008; Horowitz, Roberts, 2008]

$$ds^{2} = \frac{L^{2}}{z^{2}} \left[-f(z)dt^{2} + dx_{1}^{2} + \dots + dx_{d-1}^{2} \right] + \frac{L^{2}}{z^{2}f(z)}dz^{2}, \quad f(z) = 1 - \left(\frac{z}{z_{h}}\right)^{d}$$

$$\mathcal{O} \leftrightarrow \Psi$$

$$\forall |_{z=0} = s = \text{source of } \mathcal{O}$$

$$A_{\mu}|_{z=0} = a_{\mu} = \text{source of } \mathfrak{J}_{\mu}$$

$$S = \frac{1}{g^{2}} \int d^{d+1}x \sqrt{-g} \left(-\frac{1}{4}\mathcal{F}_{MN}^{2} - \frac{1}{L^{2}}|D_{M}\Psi|^{2} \right)$$

$$J_{\mu} = \langle \mathfrak{J}_{\mu} \rangle \propto z^{3-d}\mathcal{F}_{z\mu}|_{z=0}, \quad \Phi_{cl} = \langle \mathcal{O} \rangle \propto z^{1-d}D_{z}\Psi^{*}|_{z=0}$$

Superconducting phase $\Psi \neq 0$

no x^{μ} -dependence (homogeneous solutions) and $A_i = 0$

 $\mu \equiv A_0|_{z=0}$ $T < T_c = 0.03(0.05)\mu$ for d = 3(4)

Holographic model (gauge/gravity correspondence) Holographic Superfluids vs Superconductors Holographic insulator/superconductor transitions: motivated by cuprates Conclusions Motivations for holographic superconductors Holography at finite temperature and density and phase transitions Conductivity

Conductivity in the unbroken phase

To compute the conductivity let us consider a small time-dependent perturbation

$$A_x(t,z) = \mathcal{A}(z)e^{i\omega(p(z)-t)}$$

The system responds creating a current which is linear in a_x : $\langle J_x \rangle = \sigma E_x$. Using the AdS/CFT dictionary, $J_x \propto z^{3-d} \mathcal{F}_{zx}|_{z=0}$

$$g^2\sigma=
ho'(0)-irac{\mathcal{A}'(0)}{\omega\mathcal{A}(0)}$$

Since this is a linear response problem the conductivity can be computed by solving the linearized Maxwell equation

$$\partial_z (f \partial_z A_x) + \omega^2 \frac{A_x}{f} = 0$$

with appropriate boundary conditions.

Holographic model (gauge/gravity correspondence) Holographic Superfluids vs Superconductors Holographic insulator/superconductor transitions: motivated by cuprates Conclusions Motivations for holographic superconductors Holography at finite temperature and density and phase transitions Conductivity

Conductivity in the unbroken phase

To compute the conductivity let us consider a small time-dependent perturbation

$$A_x(t,z) = \mathcal{A}(z)e^{i\omega(p(z)-t)}$$

The system responds creating a current which is linear in a_x : $\langle J_x \rangle = \sigma E_x$. Using the AdS/CFT dictionary, $J_x \propto z^{3-d} \mathcal{F}_{zx}|_{z=0}$

$$g^2\sigma=
ho'(0)-irac{\mathcal{A}'(0)}{\omega\mathcal{A}(0)}$$

Since this is a linear response problem the conductivity can be computed by solving the linearized Maxwell equation

$$\partial_z (f \partial_z A_x) + \omega^2 \frac{A_x}{f} = 0$$

with appropriate boundary conditions.

Presence of the black hole horizon $\rightarrow \text{Re}[\sigma] \neq 0$ because the solution has to be ingoing in the horizon

Holographic model (gauge/gravity correspondence) Holographic Superfluids vs Superconductors Holographic insulator/superconductor transitions: motivated by cuprates Conclusions Motivations for holographic superconductors Holography at finite temperature and density and phase transitions Conductivity

Conductivity in the superconducting phase

To compute the conductivity let us consider a small time-dependent perturbation

$$A_{x}(t,z) = \mathcal{A}(z)e^{i\omega(p(z)-t)},$$

The system responds creating a current linear in a_x : $\langle J_x \rangle = \sigma E_x$. Using the AdS/CFT dictionary, $J_x \propto z^{3-d} \mathcal{F}_{zx}|_{z=0}$

$$g^2\sigma = p'(0) - irac{\mathcal{A}'(0)}{\omega\mathcal{A}(0)}$$

Now the linearized Maxwell equation is $\partial_z(f\partial_z A_x) + \omega^2 \frac{A_x}{f} - \frac{2}{z^2} \psi^2 A_x = 0$

Im[σ] diverges like 1/ ω as $\omega \rightarrow$ 0, corresponding through the Kramers-Kronig relation

$$\mathsf{Im}[\sigma(\omega)] = -\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{\infty} d\omega' \frac{\mathsf{Re}[\sigma(\omega')]}{\omega' - \omega}$$

to a delta function in the real part, $\text{Re}[\sigma(\omega)] \sim \pi n_s \delta(\omega)$

Holographic model (gauge/gravity correspondence)

Holographic Superfluids vs Superconductors Holographic insulator/superconductor transitions: motivated by cuprates Conclusions

Motivations for holographic superconductors Conductivity

The holographic model [Hartnoll, Herzog, Horowitz, 2008; Horowitz, Roberts, 2008]

$$\begin{split} S &= \frac{1}{g^2} \int d^{d+1} x \sqrt{-G} \left(-\frac{1}{4} \mathcal{F}_{MN}^2 - \frac{1}{L^2} |D_M \Psi|^2 \right) \\ J_\mu &= \langle \hat{J}_\mu \rangle \propto z^{3-d} \mathcal{F}_{Z\mu}|_{Z=0} \,, \quad \Phi_{\mathrm{cl}} &= \langle \mathcal{O} \rangle \propto z^{1-d} D_Z \Psi^*|_{Z=0} \end{split}$$

Superconducting phase $\Psi \neq 0$

no x^{μ} -dependence (homogeneous solutions) and $A_i = 0$

$$\mu \equiv A_0|_{z=0}$$

 $T < T_c = 0.03(0.05)\mu ~~{
m for}~~d = 3(4)$

O.

Holographic model (gauge/gravity correspondence)

Holographic Superfluids vs Superconductors Holographic insulator/superconductor transitions: motivated by cuprates Conclusions

 \mathcal{O}

Motivations for holographic superconductors Holography at finite temperature and density and phase transitions Conductivity

The holographic model [Hartnoll, Herzog, Horowitz, 2008; Horowitz, Roberts, 2008]

$$S = \frac{1}{g^2} \int d^{d+1}x \sqrt{-G} \left(-\frac{1}{4} \mathcal{F}_{MN}^2 - \frac{1}{L^2} |D_M \Psi|^2 \right)$$
$$J_\mu = \langle \hat{J}_\mu \rangle \propto z^{3-d} \mathcal{F}_{z\mu}|_{z=0} , \quad \Phi_{cl} = \langle \mathcal{O} \rangle \propto z^{1-d} D_z \Psi^*|_{z=0}$$

Non homogeneous solutions with $A_i \neq 0$ have also been found. [Albash, Johnson, 2008; Hartnoll, Herzog, Horowitz, 2008; Montull, Pomarol, Silva, 2009]

Holographic model (gauge/gravity correspondence)

Holographic Superfluids vs Superconductors Holographic insulator/superconductor transitions: motivated by cuprates Conclusions

С Ч Motivations for holographic superconductors Holography at finite temperature and density and phase transitions Conductivity

The holographic model [Hartnoll, Herzog, Horowitz, 2008; Horowitz, Roberts, 2008]

$$ds^{2} = \frac{L^{2}}{z^{2}} \left[-f(z)dt^{2} + dx_{1}^{2} + ... + dx_{d-1}^{2} \right] + \frac{L^{2}}{z^{2}f(z)}dz^{2}, \quad f(z) = 1 - \left(\frac{z}{z_{h}}\right)^{d}$$

$$D \leftrightarrow \Psi$$

$$J_{\mu} \leftrightarrow A_{M}$$

$$A_{\mu}|_{z=0} = a_{\mu}$$

$$S = \frac{1}{g^{2}} \int d^{d+1}x \sqrt{-G} \left(-\frac{1}{4}\mathcal{F}_{MN}^{2} - \frac{1}{L^{2}}|D_{M}\Psi|^{2} \right)$$

$$J_{\mu} = \langle \hat{J}_{\mu} \rangle \propto z^{3-d}\mathcal{F}_{z\mu}|_{z=0}, \quad \Phi_{cl} = \langle \mathcal{O} \rangle \propto z^{1-d}D_{z}\Psi^{*}|_{z=0}$$

Non homogeneous solutions with $A_i \neq 0$ have also been found. [Albash, Johnson, 2008; Hartnoll, Herzog, Horowitz, 2008; Montull, Pomarol, Silva, 2009]

However, that (Dirichlet) boundary condition corresponds to a superfluid

 \rightarrow non-dynamical $a_i!$

Holographic model (gauge/gravity correspondence) Holographic Superfluids vs Superconductors Holographic insulator/superconductor transitions: motivated by cuprates Conclusions

Motivations for holographic superconductors Holography at finite temperature and density and phase transitions Conductivity

Dynamical a_{μ} in holography

• impose a dynamical equation for a_{μ}

$$J^\mu + rac{1}{g_b^2} \partial_
u \mathcal{F}^{
u\mu} + J^\mu_{ext} = 0$$

Here, for generality, we have added a kinetic term for a_{μ} and a background external current J_{ext}^{μ}

• Then we must add to S the following term

$$\int d^d x \left[-\frac{1}{4g_b^2} \mathcal{F}_{\mu\nu}^2 + A_\mu J_{ext}^\mu \right]_{z=0}$$

Holographic model (gauge/gravity correspondence) Holographic Superfluids vs Superconductors Holographic insulator/superconductor transitions: motivated by cuprates Conclusions

Motivations for holographic superconductors Holography at finite temperature and density and phase transitions Conductivity

Dynamical a_{μ} in holography

impose a dynamical equation for a_μ

$$J^\mu + rac{1}{g_b^2} \partial_
u \mathcal{F}^{
u\mu} + J^\mu_{ext} = 0$$

Here, for generality, we have added a kinetic term for a_{μ} and a background external current J_{ext}^{μ}

• Then we must add to S the following term

$$\int d^{d}x \left[-\frac{1}{4g_{b}^{2}}\mathcal{F}_{\mu\nu}^{2} + A_{\mu}J_{ext}^{\mu} \right]_{z=0}$$

• by using $J_{\mu}=rac{L^{d-3}}{g^2}\,z^{3-d}\mathcal{F}_{Z\mu}|_{z=0}$

$$\frac{L^{d-3}}{g^2} z^{3-d} \mathcal{F}_z^{\ \mu} \Big|_{z=0} + \frac{1}{g_b^2} \partial_\nu \mathcal{F}^{\nu\mu} \Big|_{z=0} + J_{ext}^{\mu} = 0$$

This is an AdS-boundary condition of the Neumann type

Holographic model (gauge/gravity correspondence)

Holographic Superfluids vs Superconductors

Holographic insulator/superconductor transitions: motivated by cuprates Conclusions

Dynamical a_{μ} in holography

Dynamical gauge fields in holography Vortices

$$\frac{L^{d-3}}{g^2} z^{3-d} \mathcal{F}_z^{\ \mu} \Big|_{z=0} + \frac{1}{g_b^2} \partial_\nu \mathcal{F}^{\nu\mu} \Big|_{z=0} + J_{ext}^{\mu} = 0$$

Holographic model (gauge/gravity correspondence)

Holographic Superfluids vs Superconductors

Holographic insulator/superconductor transitions: motivated by cuprates Conclusions

Dynamical a_{μ} in holography

$$\frac{L^{d-3}}{g^2} z^{3-d} \mathcal{F}_z^{\ \mu} \Big|_{z=0} + \frac{1}{g_b^2} \partial_\nu \mathcal{F}^{\nu\mu} \Big|_{z=0} + J_{ext}^{\mu} = 0$$

$$d = 3 + 1$$
 case

 J_{μ} is logarithmically divergent:

$$\frac{1}{z}\mathcal{F}_{z\mu}\Big|_{z=0} = -\partial^{\nu}\mathcal{F}_{\nu\mu}\ln z\Big|_{z=0} + \dots$$

We can absorb the divergence in $\frac{1}{g_b^2} \partial_\nu \mathcal{F}^{\nu\mu}\Big|_{z=0}$ to define a renormalized electric charge g_0 in the normal phase ($\Phi_{\rm cl} = 0$):

$$\frac{1}{g_0^2} = \frac{1}{g_b^2} - \frac{L}{g^2} \ln z|_{z=0} + \text{finite terms}$$

 a_{μ} breaks conformal invariance (the same is true for any d > 4)

Holographic model (gauge/gravity correspondence)

Holographic Superfluids vs Superconductors

Dynamical gauge fields in holography Vortices

Holographic insulator/superconductor transitions: motivated by cuprates Conclusions

Dynamical a_{μ} in holography

$$\frac{L^{d-3}}{g^2} z^{3-d} \mathcal{F}_z^{\ \mu} \Big|_{z=0} + \frac{1}{g_b^2} \partial_\nu \mathcal{F}^{\nu\mu} \Big|_{z=0} + J_{ext}^{\mu} = 0$$

$$d = 3 + 1$$
 case

 J_{μ} is logarithmically divergent:

$$\frac{1}{z}\mathcal{F}_{z\mu}\Big|_{z=0} = -\partial^{\nu}\mathcal{F}_{\nu\mu}\ln z\Big|_{z=0} + \dots$$

We can absorb the divergence in $\frac{1}{g_b^2} \partial_\nu \mathcal{F}^{\nu\mu} \Big|_{z=0}$ to define a renormalized electric charge g_0 in the normal phase ($\Phi_{\rm cl} = 0$):

$$\frac{1}{g_0^2} = \frac{1}{g_b^2} - \frac{L}{g^2} \ln z|_{z=0} + \text{finite terms}$$

 a_{μ} breaks conformal invariance (the same is true for any d > 4) *d* = 2 + 1 **case**

 $\begin{array}{l} \text{no divergence} \Rightarrow \\ \text{we can take } g_b \to \infty \\ \text{so } \left. \frac{1}{g_b^2} \partial_\nu \mathcal{F}^{\nu \mu} \right|_{z=0} \to 0 \end{array}$

In this case a_{μ} does not break conformal invariance and can be considered as an emerging phenomenon: its kinetic term is induced by the dynamics see also [Witten, 2003]

Holographic model (gauge/gravity correspondence)

Holographic Superfluids vs Superconductors

Dynamical gauge fields in holography Vortices

Holographic insulator/superconductor transitions: motivated by cuprates Conclusions

Vortex solutions in holographic superfluids

 $\text{Vortex ansatz: } \Psi = \psi(z,r) e^{in\phi} \ , \quad A_0 = A_0(z,r) \ , \quad A_\phi = A_\phi(z,r) \ ,$

AdS-boundary conditions: s = 0, $\mu = constant$,

 $a_{\phi} = A_{\phi}|_{z=0} = \frac{1}{2}Br^2$ (Dirichlet boundary condition)

Introduction Holographic model (gauge/gravity correspondence) Holographic Superfluids vs Superconductors

Dynamical gauge fields in holography Vortices

Holographic insulator/superconductor transitions: motivated by cuprates Conclusions

Vortex solutions in holographic superfluids

Vortex ansatz: $\Psi = \psi(z, r)e^{in\phi}$, $A_0 = A_0(z, r)$, $A_{\phi} = A_{\phi}(z, r)$,

AdS-boundary conditions: s = 0, $\mu = constant$,

 $a_{\phi} = A_{\phi}|_{z=0} = \frac{1}{2}Br^2$ (Dirichlet boundary condition)

Plots: for n = 1, $T/T_c = 0.3$ and B = 0

- solid lines: holographic profiles for d = 2 + 1 (left) and d = 3 + 1 (right)
- dashed lines: corresponding profiles in the GL model

Determination of GL parameters:

- $\xi_{\mathrm{GL}}^2 = \frac{1}{2B_{c2}}$
- the matching at large *r* then gives b_{GL} .

Holographic model (gauge/gravity correspondence)

Holographic Superfluids vs Superconductors

Dynamical gauge fields in holography Vortices

Holographic insulator/superconductor transitions: motivated by cuprates Conclusions

Vortex solutions in holographic superconductors

Vortex ansatz: $\Psi = \psi(z, r)e^{in\phi}$, $A_0 = A_0(z, r)$, $A_{\phi} = A_{\phi}(z, r)$

AdS-boundary conditions: s = 0, $\mu = constant$,

 $\frac{L^{d-3}}{g^2} z^{3-d} \partial_z A_\phi \Big|_{z=0} + \frac{1}{g_b^2} r \partial_r \left(\frac{1}{r} \partial_r A_\phi \right) \Big|_{z=0} = 0 \,, \text{ (for } J^{\mu}_{ext} = 0)$

Holographic model (gauge/gravity correspondence)

Holographic Superfluids vs Superconductors

Dynamical gauge fields in holography Vortices

Holographic insulator/superconductor transitions: motivated by cuprates Conclusions

Vortex solutions in holographic superconductors

Vortex ansatz: $\Psi = \psi(z, r)e^{in\phi}$, $A_0 = A_0(z, r)$, $A_{\phi} = A_{\phi}(z, r)$

AdS-boundary conditions: s = 0, $\mu = constant$,

$$\frac{L^{d-3}}{g^2} z^{3-d} \partial_z A_\phi \Big|_{z=0} + \frac{1}{g_b^2} r \partial_r \left(\frac{1}{r} \partial_r A_\phi \right) \Big|_{z=0} = 0, \text{ (for } J^{\mu}_{ext} = 0)$$

Plots: for n = 1 and $T/T_c = 0.3$

- solid lines: holographic profiles for *d* = 2 + 1 (left) and *d* = 3 + 1 (right)
- dashed lines: corresponding profiles in the GL model

 $g_b/g \rightarrow \infty$ for d = 2 + 1, while, for d = 3 + 1, we have taken g_b to satisfies $g_0^{-2}(T = T_c) \simeq 1.7L/g^2$

Determination of GL parameters:

•
$$\xi_{GL}^2 = \frac{1}{2H_{C2}}$$
,

 the matching at large r gives b_{GL} and g₀ in the GL free energy.

Alberto Salvio

Superconductivity, Superfluidity and holography

Holographic model (gauge/gravity correspondence)

Holographic Superfluids vs Superconductors

Dynamical gauge fields in holography Vortices

Holographic insulator/superconductor transitions: motivated by cuprates Conclusions

Vortex solutions in holographic superconductors

Vortex ansatz: $\Psi = \psi(z, r)e^{in\phi}$, $A_0 = A_0(z, r)$, $A_{\phi} = A_{\phi}(z, r)$ AdS-boundary conditions: s = 0, $\mu = constant$, $\frac{L^{d-3}}{a^2} z^{3-d} \partial_z A_\phi \Big|_{z=0} + \frac{1}{a^2} r \partial_r \left(\frac{1}{r} \partial_r A_\phi \right) \Big|_{z=0} = 0, \text{ (for } J^{\mu}_{ext} = 0)$ Н Η 0.7 0.5 Plots: H_{c2} • left: d = 2 + 10.3 0.4 H_{c2} • right: d = 3 + 10.1 0.1 H_{a1} $1.0 T_{c}$ 0.8 0.2 0.4 0.6 0.8 $\overline{1.0}$ T_c 0.2 0.40.6

 $H_{c1} < H_{c2}$ for every T, so the holographic superconductors are of Type II

Interestingly, HTSC are also of Type II

Introduction Holographic model (gauge/gravity correspondence) Holographic Superfluids vs Superconductors Holographic insulator/superconductor transitions: motivated by cuprates Conclusions

The compactified higher dimensional model An alternative to compactification: the dilaton

Holographic insulator/superconductor transition

- The model above realizes a conductor/superconductor transition
- Does a holographic insulator/superconductor transition exist?

Holographic insulator/superconductor transition

- The model above realizes a conductor/superconductor transition
- Does a holographic insulator/superconductor transition exist?
- Motivations: some HTSC (the cuprates) show such transition in their phase diagrams. So called Mott insulators, which exhibit an antiferromagnetic (AF) insulating behavior, are turned into superconductors under doping; if the dopant concentration is high enough [Lee, Nagaosa, Wen, 2006]

Holographic insulator/superconductor transition

- The model above realizes a conductor/superconductor transition
- Does a holographic insulator/superconductor transition exist?
- Motivations: some HTSC (the cuprates) show such transition in their phase diagrams. So called Mott insulators, which exhibit an antiferromagnetic (AF) insulating behavior, are turned into superconductors under doping; if the dopant concentration is high enough [Lee, Nagaosa, Wen, 2006]

Holography also overcomes the challenge to describe *insulating* materials that display superconductivity at low enough temperatures [Nishioka, Ryu, Takayanagi, 2009; Salvio 2012]

Holographic model (gauge/gravity correspondence) Holographic Superfluids vs Superconductors

Holographic insulator/superconductor transitions: motivated by cuprates Conclusions The compactified higher dimensional model An alternative to compactification: the dilaton

In holography we compactify a spatial dimension: $\chi \sim \chi + 2\pi R$

We have two static metrics with symmetry $IO(d-1) \times U(1)$ or Poincaré $(d-2,1) \times U(1)$

Black Hole (deconfined) phase: a conductor

$$ds^{2} = \frac{L^{2}}{z^{2}} \left[-f(z)dt^{2} + d\chi^{2} + dy^{2}_{d-2} + \frac{dz^{2}}{f(z)} \right]$$

 $f(z) = 1 - (z/z_h)^d$, $z_h = d/4\pi T$, Favorable for $R > 1/2\pi T$ (at $\mu = 0$)

"Soliton" (confined) phase [Witten, 1998; Horowitz, Myers, 1998]: an insulator

$$ds^{2} = \frac{L^{2}}{z^{2}} \left[-dt^{2} + f(z)d\chi^{2} + dy^{2}_{d-2} + \frac{dz^{2}}{f(z)} \right]$$

 $f(z) = 1 - (z/z_0)^d$, $z_0 = dR/2$, Favorable for $R < 1/2\pi T$ (at $\mu = 0$)

 the transition between them occurs at μ and/or T around 1/R (known as a Hawking-Page transition (1983)) Holographic model (gauge/gravity correspondence) Holographic Superfluids vs Superconductors

Holographic insulator/superconductor transitions: motivated by cuprates Conclusions

The compactified higher dimensional model An alternative to compactification: the dilaton

In holography we compactify a spatial dimension: $\chi \sim \chi + 2\pi R$

We have two static metrics with symmetry $IO(d-1) \times U(1)$ or Poincaré $(d-2,1) \times U(1)$

Black Hole (deconfined) phase: a conductor

$$ds^{2} = \frac{L^{2}}{z^{2}} \left[-f(z)dt^{2} + d\chi^{2} + dy^{2}_{d-2} + \frac{dz^{2}}{f(z)} \right]$$

 $f(z) = 1 - (z/z_h)^d$, $z_h = d/4\pi T$, Favorable for $R > 1/2\pi T$ (at $\mu = 0$)

"Soliton" (confined) phase [Witten, 1998; Horowitz, Myers, 1998]: an insulator

$$ds^{2} = \frac{L^{2}}{z^{2}} \left[-dt^{2} + f(z)d\chi^{2} + dy^{2}_{d-2} + \frac{dz^{2}}{f(z)} \right]$$

 $f(z) = 1 - (z/z_0)^d$, $z_0 = dR/2$, Favorable for $R < 1/2\pi T$ (at $\mu = 0$)

- the transition between them occurs at μ and/or T around 1/R (known as a Hawking-Page transition (1983))
- both phases exhibit SC bahavior: below $T \sim 1/R$ and increasing μ , one finds first a Soliton SC state and then (for $\mu \gtrsim 1/R$) a Black Hole SC

For the soliton (with no metric backreaction) $R_c \simeq \frac{1.81(1.70)}{\mu}$, for d = 2+1(3+1)

Holographic model (gauge/gravity correspondence) Holographic Superfluids vs Superconductors

Holographic insulator/superconductor transitions: motivated by cuprates

Conclusions

The compactified higher dimensional model An alternative to compactification: the dilaton

Conductivity in the confined phase: insulator

There is no horizon and the DC conductivity vanishes
 → we have an insulator
 reason: the system has a gap

Holographic model (gauge/gravity correspondence) Holographic Superfluids vs Superconductors

Holographic insulator/superconductor transitions: motivated by cuprates

Conclusions

The compactified higher dimensional model An alternative to compactification: the dilaton

Conductivity in the confined phase: insulator

- There is no horizon and the DC conductivity vanishes
 → we have an insulator
 reason: the system has a gap
- Fluid mechanical interpretation of an insulator: a solid

Introduction Holographic model (gauge/gravity correspondence) Holographic Superfluids vs Superconductors Holographic insulator/superconductor transitions: motivated by cuprates

The compactified higher dimensional model An alternative to compactification: the dilaton

Magnetic fields in the presence of a compact space-dimension

In principle, there are two ways to turn on an external magnetic field H:

Introduction Holographic model (gauge/gravity correspondence) Holographic Superfluids vs Superconductors Holographic insulator/superconductor transitions: motivated by cuprates Conclusions

The compactified higher dimensional model An alternative to compactification: the dilaton

Magnetic fields in the presence of a compact space-dimension

In principle, there are two ways to turn on an external magnetic field H:

Introduction Holographic model (gauge/gravity correspondence) Holographic Superfluids vs Superconductors Holographic insulator/superconductor transitions: motivated by cuprates Conclusions

The compactified higher dimensional model An alternative to compactification: the dilaton

Magnetic fields in the presence of a compact space-dimension

In principle, there are two ways to turn on an external magnetic field H:

We focus on the possibility on the left because here we interpret the compact extra dimension only as a tool to have a gapped system.

For an analysis of the second possibility see [Montull, Pujolas, Salvio, Silva, 2011, 2012]

Holographic model (gauge/gravity correspondence) Holographic Superfluids vs Superconductors

The compactified higher dimensional model An alternative to compactification: the dilaton

Holographic insulator/superconductor transitions: motivated by cuprates Conclusions

$H = H_{perp}$ in the holographic insulator/superconductor transition

 $\text{Vortex ansatz (for } d \geq 4 \text{):} \quad \Psi = \psi(z,r)e^{in\phi} \ , \quad A_0 = A_0(z,r) \ , \quad A_\phi = A_\phi(z,r) \ ,$

AdS-boundary conditions: s = 0, $\mu = constant$,

 $a_{\mu} = A_{\mu}|_{z=0} = \frac{1}{2}Br^2$ (Dirichlet boundary condition)

Plots: $n = 1, R/R_c = 5$ and B = 0

- Solid lines: holographic model for d = 3 + 1
- Dashed lines: GL model (with its parameters determined as before)

Holographic model (gauge/gravity correspondence) Holographic Superfluids vs Superconductors

The compactified higher dimensional model An alternative to compactification: the dilaton

Holographic insulator/superconductor transitions: motivated by cuprates Conclusions

$H = H_{perp}$ in the holographic insulator/superconductor transition

 $\text{Vortex ansatz (for } d \geq 4\text{):} \quad \Psi = \psi(z,r)e^{in\phi} \;, \quad A_0 = A_0(z,r) \;, \quad A_\phi = A_\phi(z,r) \;,$

AdS-boundary conditions: s = 0, $\mu = constant$,

 $\frac{L^{d-3}}{g^2}z^{3-d}\partial_z A_\phi\Big|_{z=0} + \frac{1}{g_b^2}r\partial_r\left(\frac{1}{r}\partial_r A_\phi\right)\Big|_{z=0} = 0\,, \text{ (for } J^{\mu}_{ext} = 0)$

The gauge field is emergent for $R \rightarrow 0$

Plots: The modulus of $\langle \mathcal{O} \rangle$ (up to L^{d-3}/g^2) and *B* versus *r* for n = 1

- Solid lines: holographic model for d = 3 + 1, $R/R_c = 5$ and g_b chosen to satisfy $g_0^{-1}(R = R_c) \simeq 1.7L/g^2$
- Dashed lines: GL model (with its parameters determined as before)

Holographic model (gauge/gravity correspondence) Holographic Superfluids vs Superconductors

The compactified higher dimensional model An alternative to compactification: the dilaton

Holographic insulator/superconductor transitions: motivated by cuprates Conclusions

$H = H_{perp}$ in the holographic insulator/superconductor transition

 $\text{Vortex ansatz (for } d \geq 4\text{):} \quad \Psi = \psi(z,r)e^{in\phi} \;, \quad A_0 = A_0(z,r) \;, \quad A_\phi = A_\phi(z,r) \;,$

AdS-boundary conditions: s = 0, $\mu = constant$,

 $\frac{L^{d-3}}{g^2} z^{3-d} \partial_z A_\phi \Big|_{z=0} + \frac{1}{g_b^2} r \partial_r \left(\frac{1}{r} \partial_r A_\phi\right) \Big|_{z=0} = 0, \text{ (for } J_{ext}^\mu = 0)$

Plots: H_{c1} and H_{c2} versus R from holography for d = 3 + 1 and g_b chosen to satisfy $g_0^{-1}(R = R_c) \simeq 1.7L/g^2$

$H_{c1} < H_{c2}$ for every *R*, so also in this phase the holographic superconductor is of Type II, like the high-temperature superconductors

Introduction Holographic model (gauge/gravity correspondence) Holographic Superfluids vs Superconductors Holographic insulator/superconductor transitions: motivated by cuprates Conclusions

The compactified higher dimensional model An alternative to compactification: the dilaton

Dilaton-Gravity

An (approximate) insulating normal phase can also be obtained with a dilaton

Other reasons for dilatonic extensions are

- Charged dilaton black holes have more physical low-temperature behavior [Charmousis, Gouteraux, Kim , Kiritsis, Meyer, 2010]
- Dilatons typically emerge in low-energy effective descpritions of string theories

Introduction Holographic model (gauge/gravity correspondence) Holographic Superfluids vs Superconductors Holographic insulator/superconductor transitions: motivated by cuprates Conclusions

The compactified higher dimensional model An alternative to compactification: the dilaton

Dilaton-Gravity

An (approximate) insulating normal phase can also be obtained with a dilaton

Other reasons for dilatonic extensions are

- Charged dilaton black holes have more physical low-temperature behavior [Charmousis, Gouteraux, Kim , Kiritsis, Meyer, 2010]
- Dilatons typically emerge in low-energy effective descpritions of string theories

The gravity action:

$$S_{\text{gravity}} = rac{1}{16\pi G_N} \int d^4x \, \sqrt{-g} \left[\mathcal{R} - (\partial_lpha \phi)^2 - V(\phi)
ight]$$

The most general static asymptotically AdS planar black hole with two-dimensional rotation and translation invariance has recently been derived [anabalón, 2012]. This allows us to extend the previous analysis to general dilaton-gravity model in the limit $G_N \rightarrow 0$.

In particular we have

$$\phi(z) = \sqrt{\frac{\nu^2 - 1}{2}} \ln(1 + z/L)$$

Introduction Holographic model (gauge/gravity correspondence) Holographic Superfluids vs Superconductors Holographic insulator/superconductor transitions: motivated by cuprates

The compactified higher dimensional model An alternative to compactification: the dilaton

Holographic model for superfluid phase transitions

Conclusions

$$\mathcal{S} = \mathcal{S}_{ ext{gravity}} + \int d^4x \, \sqrt{-g} \left\{ -rac{Z_{\mathcal{A}}(\phi)}{4g^2} \mathcal{F}^2_{lphaeta} - rac{Z_{\psi}(\phi)}{L^2g^2} |D_lpha \Psi|^2
ight\}$$

the dilaton couples to A_{α} and Ψ through two *generic* functions $Z_A(\phi)$ and $Z_{\psi}(\phi)$

There are no special requirements for the Zs at this level, besides the fact that they should be regular and nonvanishing for any ϕ in order for the semiclassical approximation to be valid

Again one can show that

- There is a superfluid phase transition at small enough ${\cal T}$ and big enough μ
- There are vortex solutions both in the superfluid and in the superconductor case

Introduction Holographic model (gauge/gravity correspondence) Holographic Superfluids vs Superconductors Holographic insulator/superconductor transitions: motivated by cuprates Conclusions

Conductivity

The compactified higher dimensional model An alternative to compactification: the dilaton

We can study the conductivity using the same approach we used without the dilaton

One can show

$$\lim_{\omega\to 0} \operatorname{Re}[\sigma] = \frac{1}{g^2} Z_A|_{z=z_h}$$

 \rightarrow the DC conductivity can be suppressed or enhanced depending on $Z_A(\phi)$

Example: $Z_A(\phi) = e^{\gamma\phi}$, the bigger γ the bigger the DC conductivity, while a large negative value of γ corresponds to an approximate insulating behavior. This effect is even stronger at low temperatures

$$\lim_{\omega\to 0} \operatorname{Re}[\sigma] \sim T^{-\gamma\sqrt{(\nu^2-1)/2}}$$

For a $Z_A(\phi)$ such that the DC conductivity is small for $\phi \neq 0$ the superfluid phase transition is a conductor/superconductor transition at high T and a (non-ideal)insulator/superconductor one at low T

Introduction Holographic model (gauge/gravity correspondence) Holographic Superfluids vs Superconductors Holographic insulator/superconductor transitions: motivated by cuprates **Conclusions**

Conclusions

• Effective field theory description and comparison between superfluids and superconductors

- Effective field theory description and comparison between superfluids and superconductors
- Holography at finite T, μ and phase transitions: an interesting connection between gravitational physics and condensed matter
- We can study the conductivity holographically. The presence of the horizon implies the DC conductivity never vanishes

- Effective field theory description and comparison between superfluids and superconductors
- Holography at finite T, μ and phase transitions: an interesting connection between gravitational physics and condensed matter
- We can study the conductivity holographically. The presence of the horizon implies the DC conductivity never vanishes
- We introduced genuine holographic superconductors by promoting the gauge field to a dynamical object
- This is important e.g. to study holographically superconducting vortices (we did so and compared them to superfluid vortices)

- Effective field theory description and comparison between superfluids and superconductors
- Holography at finite T, μ and phase transitions: an interesting connection between gravitational physics and condensed matter
- We can study the conductivity holographically. The presence of the horizon implies the DC conductivity never vanishes
- We introduced genuine holographic superconductors by promoting the gauge field to a dynamical object
- This is important e.g. to study holographically superconducting vortices (we did so and compared them to superfluid vortices)
- This discussion can be extended to holographic models with insulating normal phase (as observed in cuprate high-temperature superconductors): it can be realized by introducing an extra compactified dimension or through a dilatonic field

- Effective field theory description and comparison between superfluids and superconductors
- Holography at finite T, μ and phase transitions: an interesting connection between gravitational physics and condensed matter
- We can study the conductivity holographically. The presence of the horizon implies the DC conductivity never vanishes
- We introduced genuine holographic superconductors by promoting the gauge field to a dynamical object
- This is important e.g. to study holographically superconducting vortices (we did so and compared them to superfluid vortices)
- This discussion can be extended to holographic models with insulating normal phase (as observed in cuprate high-temperature superconductors): it can be realized by introducing an extra compactified dimension or through a dilatonic field

Outlook

- Applications of the method to introduce a dynamical gauge field in holography to color superconductivity
- Extension of the insulator/superconductor models to describe a bigger portion of (or even the complete) phase diagram of cuprate high-temperature superconductors