.

Superconductivity, Superfluidity and holography

Alberto Salvio

Department of Theoretical Physics and Institute of Theoretical Physics, Autonoma University of Madrid, Spain
and Superiore di Pisa, Italy
Scuola Normale Superiore di Pisa, Italy

12 November 2012, Laboratori Nazionali del Gran Sasso

Partly based on

O. Domenech, M. Montull, A. Pomarol, A. S. and P. J. Silva, JHEP ` **1008** *(2010) 033 arXiv:1005.1776 M. Montull, O. Pujolas, A. S. and P. J. Silva, Phys. Rev. Lett. `* **107** *(2011) 181601 arXiv:1105.5392 M. Montull, O. Pujolas, A. S. and P. J. Silva, JHEP `* **1204** *(2012) 135 arXiv:1202.0006 A. S., JHEP* **1209** *(2012) 134 arXiv:1207.3800*

Alberto Salvio *Superconductivity, Superfluidity and holography*

. **Outline**

- .**¹ Introduction**
	- Effective Field Theory Description
	- Comparison between superconductors and superfluids

. **Outline**

.**¹ Introduction**

- **Effective Field Theory Description**
- Comparison between superconductors and superfluids

.**² Holographic model (gauge/gravity correspondence)**

- Motivations for holographic superconductors
- Holography at finite temperature and density and phase transitions
- Conductivity

. **Outline**

.**¹ Introduction**

- **Effective Field Theory Description**
- Comparison between superconductors and superfluids

.**² Holographic model (gauge/gravity correspondence)**

- Motivations for holographic superconductors
- Holography at finite temperature and density and phase transitions

Alberto Salvio *Superconductivity, Superfluidity and holography*

• Conductivity

.**³ Holographic Superfluids vs Superconductors**

- Dynamical gauge fields in holography
- Vortices

. **Outline**

.**¹ Introduction**

- **Effective Field Theory Description**
- Comparison between superconductors and superfluids

.**² Holographic model (gauge/gravity correspondence)**

- Motivations for holographic superconductors
- Holography at finite temperature and density and phase transitions
- **•** Conductivity

.**³ Holographic Superfluids vs Superconductors**

- **·** Dynamical gauge fields in holography
- **•** Vortices
- .**⁴ Holographic insulator/superconductor transitions: motivated by cuprates**
	- The compactified higher dimensional model
	- An alternative to compactification: the dilaton

. **Outline**

.**¹ Introduction**

- **Effective Field Theory Description**
- Comparison between superconductors and superfluids

.**² Holographic model (gauge/gravity correspondence)**

- Motivations for holographic superconductors
- Holography at finite temperature and density and phase transitions
- **•** Conductivity

.**³ Holographic Superfluids vs Superconductors**

- **·** Dynamical gauge fields in holography
- **•** Vortices
- .**⁴ Holographic insulator/superconductor transitions: motivated by cuprates**
	- The compactified higher dimensional model
	- An alternative to compactification: the dilaton
- .**⁵ Conclusions**

Introduction Holographic model (gauge/gravity correspondence) Holographic Superfluids vs Superconductors Holographic ins Conclusions

.

.

Effective Field Theory Description Comparison between superconductors and superfluids

ĭ

Effective theories of superfluids and superconductors along the lines of [Weinberg, 1986]

A superconductor (SC) is a material in which $U(1)_{\mathrm{em}}$ is spontaneously broken.

Simplest field content: $a_{\mu} \equiv (a_0, a_i), \Phi_{\text{cl}}$ For time-independent configurations and without electric fields

Free energy =
$$
F = \int d^{d-1}x \mathcal{L}_{eff}(\mathcal{F}_{ij}^2, |D_i \Phi_{cl}|^2, |\Phi_{cl}|, ...)
$$

\n
$$
\mathcal{F}_{ij} \equiv \partial_i a_j - \partial_j a_i, \quad D_i \Phi_{cl} \equiv (\partial_\mu - i a_\mu) \Phi_{cl}
$$
\n
$$
J^i = -\frac{\delta F}{\delta a_i}
$$

.

Effective Field Theory Description Compared Superfluids

Effective theories of superfluids and superconductors along the lines of [Weinberg, 1986]

Conclusions

. A superconductor (SC) is a material in which $U(1)_{\mathrm{em}}$ is spontaneously broken.

Simplest field content: $a_{\mu} \equiv (a_0, a_i), \Phi_{\text{cl}}$ For time-independent configurations and without electric fields

Free energy =
$$
F = \int d^{d-1}x \mathcal{L}_{eff}(\mathcal{F}_{ij}^2, |D_i\Phi_{cl}|^2, |\Phi_{cl}|, ...)
$$

$$
\mathcal{F}_{ij} \equiv \partial_i \mathbf{a}_j - \partial_j \mathbf{a}_i, \quad D_i \Phi_{\rm cl} \equiv (\partial_\mu - i \mathbf{a}_\mu) \Phi_{\rm cl}
$$

$$
J^i=-\frac{\delta F}{\delta a_i}
$$

For small enough fields we expect a Ginzburg-Landau (GL) free energy:

$$
F_{\text{GL}} = \int d^{d-1}x \Big\{ \frac{1}{4g_0^2} \mathcal{F}_{ij}^2 + |D_i \Phi_{\text{GL}}|^2 + V_{\text{GL}}(|\Phi_{\text{GL}}|) \Big\}
$$

$$
\Phi_{\text{GL}} = \text{constant} \times \Phi_{\text{cl}} , \quad V_{\text{GL}} = -\frac{1}{2\xi_{\text{GL}}^2} |\Phi_{\text{GL}}|^2 + b_{\text{GL}} |\Phi_{\text{GL}}|^4
$$

.

Effective Field Theory Description Comparison between superconductors and superfluids

Effective theories of superfluids and superconductors along the lines of [Weinberg, 1986]

Conclusions

. A superconductor (SC) is a material in which $U(1)_{\mathrm{em}}$ is spontaneously broken.

Simplest field content: $a_{\mu} \equiv (a_0, a_i), \Phi_{\text{cl}}$ For time-independent configurations and without electric fields

Free energy =
$$
F = \int d^{d-1}x \mathcal{L}_{eff}(\mathcal{F}_{ij}^2, |D_i \Phi_{cl}|^2, |\Phi_{cl}|, ...)
$$

$$
\mathcal{F}_{ij} \equiv \partial_i a_j - \partial_j a_i, \quad D_i \Phi_{\rm cl} \equiv (\partial_\mu - i a_\mu) \Phi_{\rm cl}
$$

$$
J^i = -\frac{\delta F}{\delta a_i}
$$

For small enough fields we expect a Ginzburg-Landau (GL) free energy:

$$
F_{\rm GL} = \int d^{d-1}x \Big\{ \frac{1}{4g_0^2} \mathcal{F}_{ij}^2 + |D_i \Phi_{\rm GL}|^2 + V_{\rm GL}(|\Phi_{\rm GL}|) \Big\}
$$

$$
\Phi_{\text{GL}} = \text{constant} \times \Phi_{\text{cl}} , \quad V_{\text{GL}} \equiv -\frac{1}{2\xi_{\text{GL}}^2} |\Phi_{\text{GL}}|^2 + b_{\text{GL}} |\Phi_{\text{GL}}|^4
$$

.non-dynamical *aⁱ ↔* superfluid limit

Effective Field Theory Description Comparison between superconductors and superfluids

. **Comparing superconductors with superfluids**

Introduction

Holographic model (gauge/gravity correspondence) Holographic Superfluids vs Superconductors Holographic insulator/superconductor transitions: motivated by cuprates Conclusions

Effective Field Theory Description Comparison between superconductors and superfluids

. **Superfluid vortices**

take the vortex Ansatz: $a_\phi = a_\phi(r) \ , \ \ \Phi_{\rm cl} = e^{\text{i} n \phi} \psi_{\rm cl}(r) \ , \ \ n = \text{i} n$ teger

 (r, ϕ) are the polar coordinates restricted to $0 \le r \le r_m$, $0 \le \phi < 2\pi$

. *a^φ* is not dynamical (it is an external angular velocity performed on the superfluid):

This is implemented by working in a *rotating frame* with a constant angular velocity $\Omega = a_\phi/r^2.$ In going from the static to the rotating frame the angular velocity of the $\mathsf{superfluid}$ is changed accordingly: $\mathsf{v}_\phi \to \mathsf{v}_\phi - \Omega r^2.$ Then $\mathsf{J}_\phi \propto (\mathsf{v}_\phi - \Omega r^2).$

Introduction

Holographic model (gauge/gravity correspondence) Holographic Superfluids vs Superconductors Holographic insulator/superconductor transitions: motivated by cuprates Concl

Effective Field Theory Description Comparison between superconductors and superfluids

. **Superfluid vortices**

take the vortex Ansatz: $a_\phi = a_\phi(r) \ , \ \ \Phi_{\rm cl} = e^{\text{i} n \phi} \psi_{\rm cl}(r) \ , \ \ n = \text{i} n$ teger (r, ϕ) are the polar coordinates restricted to $0 \le r \le r_m$, $0 \le \phi < 2\pi$

. *a^φ* is not dynamical (it is an external angular velocity performed on the superfluid):

This is implemented by working in a *rotating frame* with a constant angular velocity $\Omega = a_\phi/r^2.$ In going from the static to the rotating frame the angular velocity of the $\mathsf{superfluid}$ is changed accordingly: $\mathsf{v}_\phi \to \mathsf{v}_\phi - \Omega r^2.$ Then $\mathsf{J}_\phi \propto (\mathsf{v}_\phi - \Omega r^2).$

.Superfluids *↔* superconductors in the limit in which the EM field is frozen

In the Ginzburg-Landau theory the limit is $g_0 \rightarrow 0$ while keeping the external magnetic field $B = \partial_r a_\phi / r$ constant. In this limit

 $\Omega \leftrightarrow B/2$, $L_{\perp} \leftrightarrow 2M$

Introduction

Holographic model (gauge/gravity correspondence) Holographic Superfluids vs Superconductors Holographic insulator/superconductor transitions: motivated by cuprates Concl

Effective Field Theory Description Comparison between superconductors and superfluids

. **Superfluid vortices**

take the vortex Ansatz: $a_\phi = a_\phi(r) \ , \ \ \Phi_{\rm cl} = e^{\text{i} n \phi} \psi_{\rm cl}(r) \ , \ \ n = \text{i} n$ teger (r, ϕ) are the polar coordinates restricted to $0 \le r \le r_m$, $0 \le \phi < 2\pi$

. *a^φ* is not dynamical (it is an external angular velocity performed on the superfluid):

This is implemented by working in a *rotating frame* with a constant angular velocity $\Omega = a_\phi/r^2.$ In going from the static to the rotating frame the angular velocity of the $\mathsf{superfluid}$ is changed accordingly: $\mathsf{v}_\phi \to \mathsf{v}_\phi - \Omega r^2.$ Then $\mathsf{J}_\phi \propto (\mathsf{v}_\phi - \Omega r^2).$

.Superfluids *↔* superconductors in the limit in which the EM field is frozen

In the Ginzburg-Landau theory the limit is $g_0 \rightarrow 0$ while keeping the external magnetic field $B = \partial_r a_\phi / r$ constant. In this limit

 $\Omega \leftrightarrow B/2$, $L_{\perp} \leftrightarrow 2M$

For $\Omega \simeq \Omega_c$

Effective Field Theory Description Comparison between superconductors and superfluids

. **Superconductor vortices**

take the vortex Ansatz: $a_{\phi} = a_{\phi}(r)$, $\;\Phi_{\textrm{cl}} = e^{in\phi}\psi_{\textrm{cl}}(r)$, $\;$ n = *integer* (r, ϕ) are the polar coordinates restricted to $0 \le r \le r_m$, $0 \le \phi < 2\pi$.

A superconducting plane probed by an external field *H* orthogonal to the plane

Introduction Holographic model (gauge/gravity correspondence) Holographic Superfluids vs Superconductors Holographic insulator/superconductor transitions: motivated by cuprates Con **Effective Field Theory Description Comparison between superconductors and superfluids** . **Comparing superconductors with superfluids: vortices**

For superconductor vortices, the dynamics of aⁱ is crucial

WHY?

. **Now Holography**

Introduction Holographic model (gauge/gravity correspondence) Holographic Superfluids vs Superconductors Holographic insulator/superconductor transitions: motivated by cuprates Conclusions

Motivations for holographic superconductors Holography at finite temperature and density and phase transitions Conductivity

Introduction Holographic model (gauge/gravity correspondence) Motivations for holographic superconductors Holography at finite temperature and density and phase transitions Holographic Superfluids vs Superconductor
uperconductor transitions: motivated by cupr Holographic insulator/superco **Conductivity Conclusions The gauge/gravity correspondence and its motivations The goal:** *describe strongly coupled systems by using a weakly coupled model with (at least) one extra dimension* **Classic example:** the AdS/CFT correspondence **[Maldacena, 1997]** Type II B string theory on $AdS_5 \times S^5$ $\mathcal{N}=4$ SYM on Minkowski *↔* $\frac{1}{2}$ figures of **[Mateos, 2007]** classical limit of string theory *↔ N^c → ∞* $N_c \to \infty$, $\lambda \equiv g_{\gamma M}^2 N_c \to \infty$
(not perturbative) alassical limit and particle approximation \leftrightarrow **More recently:** Phenomenological applications of holography to

- Condensed matter: for a review see for example **[Hartnoll, 2009]**
- To Quantum Chromodynamics **[Da Rold, Pomarol, 2005; Erlich, Katz, Son, Stephanov, 2005]**
- Strongly coupled theories beyond the Standard Model; e.g. composite Higgs models **[Agashe, Contino, Pomarol, 2004]**
	-

.

Introduction Holographic model (gauge/gravity correspondence) Holographic Superfluids vs Superconductors Holographic insula

Motivations for holographic superconductors Holography at finite temperature and density and phase transitions Conductivity

. **Motivations for holographic superconductors**

- The most famous properties of superconductors follow from the spontaneous symmetry breaking of $U(1)_{em}$ gauge invariance
- However, to understand how and when the spontaneous symmetry breaking of $U(1)_{\text{em}}$ occurs one needs a microscopic theory
- BCS theory **[Bardeen, Cooper, Schrieffer, 1957]** describes "conventional superconductors" only

Conclusions

There are also "unconventional superconductors"

e.g. some high-temperature superconductors (HTSC) which, unlike BCS theory, seem to involve strong coupling

important applications; e.g. HTSC current leads for the LHC magnets

Introduction Holographic model (gauge/gravity correspondence) Holographic Superfluids vs Superconductors Holographic insulations

Motivations for holographic superconductors Holography and phase transity and phase transitions Conductivity

. **Motivations for holographic superconductors**

- The most famous properties of superconductors follow from the spontaneous symmetry breaking of $U(1)_{\text{em}}$ gauge invariance
- However, to understand how and when the spontaneous symmetry breaking of $U(1)_{\text{em}}$ occurs one needs a microscopic theory
- BCS theory **[Bardeen, Cooper, Schrieffer, 1957]** describes "conventional superconductors" only

Conclusions

There are also "unconventional superconductors"

e.g. some high-temperature superconductors (HTSC) which, unlike BCS theory, seem to involve strong coupling

important applications; e.g. HTSC current leads for the LHC magnets

.*→* apply the gauge/gravity correspondence

Motivations for holographic superconductors Holography at finite temperature and density and phase transitions Conductivity

The holographic model [Hartnoll, Herzog, Horowitz, 2008; Horowitz, Roberts, 2008]

$$
ds^{2} = \frac{L^{2}}{z^{2}} \left[-f(z)dt^{2} + dx_{1}^{2} + \ldots + dx_{d-1}^{2} \right] + \frac{L^{2}}{z^{2}f(z)}dz^{2}, \quad f(z) = 1 - \left(\frac{z}{z_{h}}\right)^{d}
$$

$$
\mathcal{O} \leftrightarrow \Psi
$$

$$
\mathcal{Q} \leftrightarrow \mathcal{U}
$$

$$
\Psi|_{z=0} = s = \text{source of } \mathcal{O}
$$

.

$$
\mathfrak{J}_{\mu} \leftrightarrow \mathcal{A}_{M}
$$

$$
\mathcal{A}_{\mu}|_{z=0} = a_{\mu} = \text{source of } \mathfrak{J}_{\mu}
$$

When Ψ = 0 *the system describes a conductor (with non-zero conductivity)*

.

Motivations for holographic superconductors Holography at finite temperature and density and phase transitions Conductivity

The holographic model [Hartnoll, Herzog, Horowitz, 2008; Horowitz, Roberts, 2008]

$$
ds^{2} = \frac{L^{2}}{z^{2}} \left[-f(z)dt^{2} + dx_{1}^{2} + \dots + dx_{d-1}^{2} \right] + \frac{L^{2}}{z^{2}f(z)}dz^{2}, \quad f(z) = 1 - \left(\frac{z}{z_{h}}\right)^{d}
$$

$$
\mathcal{O} \leftrightarrow \mathcal{V}
$$

$$
\mathcal{V}|_{z=0} = s = \text{source of } \mathcal{O}
$$

$$
\mathcal{A}_{\mu}|_{z=0} = a_{\mu} = \text{source of } \mathcal{J}_{\mu}
$$

$$
S = \frac{1}{g^2} \int d^{d+1}x \sqrt{-g} \left(-\frac{1}{4} \mathcal{F}_{MN}^2 - \frac{1}{L^2} |D_M \Psi|^2 \right)
$$

$$
J_\mu = \langle \hat{J}_\mu \rangle \propto z^{3-d} \mathcal{F}_{Z\mu}|_{Z=0}, \quad \Phi_{\text{cl}} = \langle \mathcal{O} \rangle \propto z^{1-d} D_Z \Psi^*|_{Z=0}
$$

.

and

 $\mu \equiv$

Motivations for holographic superconductors Holography at finite temperature and density and phase transitions Conductivity

The holographic model [Hartnoll, Herzog, Horowitz, 2008; Horowitz, Roberts, 2008]

$$
ds^{2} = \frac{L^{2}}{z^{2}} \left[-f(z)dt^{2} + dx_{1}^{2} + ... + dx_{d-1}^{2} \right] + \frac{L^{2}}{z^{2}f(z)}dz^{2}, \quad f(z) = 1 - \left(\frac{z}{z_{h}}\right)^{d}
$$
\n
$$
0 \leftrightarrow \Psi
$$
\n
$$
\Psi|_{z=0} = s = \text{source of } \mathcal{O}
$$
\n
$$
S = \frac{1}{g^{2}} \int d^{d+1}x \sqrt{-g} \left(-\frac{1}{4} \mathcal{F}_{MN}^{2} - \frac{1}{L^{2}} |D_{M}\Psi|^{2} \right)
$$
\n
$$
J_{\mu} = \langle J_{\mu} \rangle \propto z^{3-d} \mathcal{F}_{z\mu}|_{z=0}, \quad \Phi_{c1} = \langle \mathcal{O} \rangle \propto z^{1-d} D_{z} \Psi^{*}|_{z=0}
$$
\n**Superconducting phase** $\Psi \neq 0$ \n
$$
\text{no } x^{\mu}
$$
-dependence (homogeneous solutions)\nand $A_{i} = 0$ \n
$$
\mu \equiv A_{0}|_{z=0}
$$
\n
$$
T < T_{c} = 0.03(0.05)\mu \quad \text{for } d = 3(4)
$$
\n
$$
\text{no } \mathcal{F}_{z\mu} = \mathcal{F
$$

Motivations for holographic superconductors Holography at finite temperature and density and phase transitions Conductivity

. **Conductivity in the unbroken phase**

To compute the conductivity let us consider a small time-dependent perturbation

$$
A_x(t,z)=A(z)e^{i\omega(p(z)-t)}
$$

The system responds creating a current which is linear in a_x : $\langle J_x \rangle = \sigma E_x$. Using the AdS/CFT dictionary, $J_x \propto z^{3-d} \mathcal{F}_{zx}|_{z=0}$

Conclusions

$$
g^2 \sigma = p'(0) - i \frac{\mathcal{A}'(0)}{\omega \mathcal{A}(0)}
$$

Since this is a linear response problem the conductivity can be computed by solving the linearized Maxwell equation

$$
\partial_z(f\partial_zA_x)+\omega^2\frac{A_x}{f}=0
$$

with appropriate boundary conditions.

Introduction Holographic model (gauge/gravity correspondence) Holographic Superfluids vs Superconductors Holographic insulator/su

Motivations for holographic superconductors Holography at finite temperature and density and phase transitions Conductivity

. **Conductivity in the unbroken phase**

To compute the conductivity let us consider a small time-dependent perturbation

$$
A_x(t,z)=A(z)e^{i\omega(p(z)-t)}
$$

The system responds creating a current which is linear in a_x : $\langle J_x \rangle = \sigma E_x$. Using the AdS/CFT dictionary, $J_x \propto z^{3-d} \mathcal{F}_{zx}|_{z=0}$

Conclusions

$$
g^2 \sigma = p'(0) - i \frac{\mathcal{A}'(0)}{\omega \mathcal{A}(0)}
$$

Since this is a linear response problem the conductivity can be computed by solving the linearized Maxwell equation

$$
\partial_z(f\partial_zA_x)+\omega^2\frac{A_x}{f}=0
$$

with appropriate boundary conditions.

. because the solution has to be ingoing in the horizon Presence of the black hole horizon → Re[*σ*] \neq 0

Introduction Holographic model (gauge/gravity correspondence) Holographic Superfluids vs Superconductors Holographic insulator/superconductor transitions: motivated by cuprates Conc **Motivations for holographic superconductors Holography at finite temperature and density and phase transitions Conductivity**

. **Conductivity in the superconducting phase**

To compute the conductivity let us consider a small time-dependent perturbation

$$
A_x(t,z)=A(z)e^{i\omega(p(z)-t)},
$$

The system responds creating a current linear in a_x : $\langle J_x \rangle = \sigma E_x$. Using the AdS/CFT dictionary, $J_x \propto z^{3-d} \mathcal{F}_{zx}|_{z=0}$

$$
g^2 \sigma = p'(0) - i \frac{\mathcal{A}'(0)}{\omega \mathcal{A}(0)}
$$

Now the linearized Maxwell equation is $\partial_z(f\partial_z A_x) + \omega^2 \frac{A_x}{f}$ *f −* 2 $\frac{2}{Z^2} \psi^2 A_x = 0$

Im[*σ*] diverges like 1*/ω* as *ω →* 0, corresponding through the Kramers-Kronig relation

$$
\text{Im}[\sigma(\omega)] = -\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{\infty} d\omega' \frac{\text{Re}[\sigma(\omega')]}{\omega' - \omega}
$$

. to a delta function in the real part, Re[*σ*(*ω*)] *∼ πnsδ*(*ω*)

.

no *x*

 $\mu \equiv$

Motivations for holographic superconductors Holography at finite temperature and density and phase transitions Conductivity

The holographic model [Hartnoll, Herzog, Horowitz, 2008; Horowitz, Roberts, 2008]

$$
ds^{2} = \frac{L^{2}}{z^{2}} \left[-f(z)dt^{2} + dx_{1}^{2} + ... + dx_{d-1}^{2} \right] + \frac{L^{2}}{z^{2}f(z)}dz^{2}, \quad f(z) = 1 - \left(\frac{z}{z_{h}}\right)^{d}
$$
\n
$$
\mathbf{0} \leftrightarrow \mathbf{\Psi}
$$
\n
$$
\mathbf{\Psi}|_{z=0} = s = \text{source of } \mathcal{O}
$$
\n
$$
\mathbf{0} \leftrightarrow \mathbf{\Psi}_{|z=0} = s = \text{source of } \mathcal{O}
$$
\n
$$
S = \frac{1}{g^{2}} \int d^{d+1}x \sqrt{-G} \left(-\frac{1}{4} \mathcal{F}_{MN}^{2} - \frac{1}{L^{2}} |D_{M} \Psi|^{2} \right)
$$
\n
$$
J_{\mu} = \langle J_{\mu} \rangle \propto z^{3-d} \mathcal{F}_{z\mu}|_{z=0}, \quad \Phi_{cl} = \langle \mathcal{O} \rangle \propto z^{1-d} D_{z} \Psi^{*}|_{z=0}
$$
\n
$$
\text{Superconducting phase } \Psi \neq 0
$$
\n
$$
\text{no } x^{\mu}
$$
\n
$$
\mathbf{\Psi} = \mathbf{A}_{0}|_{z=0}
$$
\n
$$
\mu \equiv \mathbf{A}_{0}|_{z=0}
$$
\n
$$
T < T_{c} = 0.03(0.05)\mu \quad \text{for } d = 3(4)
$$
\n
$$
\mathbf{\Psi}_{z=0} = \mathbf{\Psi}_{z=0}
$$
\n
$$
\mathbf{\Psi}_{z=0}
$$
\n
$$
\mathbf{\Psi}_{z=0}
$$

Alberto Salvio *Superconductivity, Superfluidity and holography*

z

.

Motivations for holographic superconductors Holography at finite temperature and density and phase transitions Conductivity

The holographic model [Hartnoll, Herzog, Horowitz, 2008; Horowitz, Roberts, 2008]

$$
ds^{2} = \frac{L^{2}}{z^{2}} \left[-f(z)dt^{2} + dx_{1}^{2} + \dots + dx_{d-1}^{2} \right] + \frac{L^{2}}{z^{2}f(z)}dz^{2}, \quad f(z) = 1 - \left(\frac{z}{z_{h}}\right)^{d}
$$

$$
\mathcal{O} \leftrightarrow \Psi
$$

$$
\mathcal{V}|_{z=0} = s = \text{source of } \mathcal{O}
$$

$$
\mathcal{A}_{\mu}|_{z=0} = a_{\mu} = \text{source of } \hat{\mathcal{J}}_{\mu}
$$

$$
S = \frac{1}{g^2} \int d^{d+1}x \sqrt{-G} \left(-\frac{1}{4} \mathcal{F}_{MN}^2 - \frac{1}{L^2} |D_M \Psi|^2 \right)
$$

$$
J_\mu = \langle \hat{J}_\mu \rangle \propto z^{3-d} \mathcal{F}_{Z\mu}|_{Z=0}, \quad \Phi_{\text{cl}} = \langle \mathcal{O} \rangle \propto z^{1-d} D_Z \Psi^*|_{Z=0}
$$

Non homogeneous solutions with $A_i \neq 0$ have also been found. **[Albash, Johnson, 2008; Hartnoll, Herzog, Horowitz, 2008; Montull, Pomarol, Silva, 2009]**

.

Motivations for holographic superconductors Holography at finite temperature and density and phase transitions Conductivity

The holographic model [Hartnoll, Herzog, Horowitz, 2008; Horowitz, Roberts, 2008]

$$
ds^{2} = \frac{l^{2}}{z^{2}} \left[-f(z)dt^{2} + dx_{1}^{2} + ... + dx_{d-1}^{2} \right] + \frac{l^{2}}{z^{2}f(z)}dz^{2}, \quad f(z) = 1 - \left(\frac{z}{z_{h}}\right)^{d}
$$

\n
$$
\mathcal{O} \leftrightarrow \Psi
$$

\n
$$
\Psi|_{z=0} = s = \text{source of } \mathcal{O}
$$

\n
$$
S = \frac{1}{g^{2}} \int d^{d+1}x \sqrt{-G} \left(-\frac{1}{4} \mathcal{F}_{MN}^{2} - \frac{1}{L^{2}} |D_{M}\Psi|^{2} \right)
$$

\n
$$
J_{\mu} = \langle J_{\mu} \rangle \propto z^{3-d} \mathcal{F}_{z\mu}|_{z=0}, \quad \Phi_{cl} = \langle \mathcal{O} \rangle \propto z^{1-d} D_{z} \Psi^{*}|_{z=0}
$$

\nNon homogeneous solutions with $A_{i} \neq 0$ have also been found.
\n[Albash, Johnson, 2008; Hartnoll, Herzog, Horowitz, 2008; Montull, Pomarol, Silva, 2009]
\nHowever, that (Dirichlet) boundary condition corresponds to a superfluid
\n \rightarrow non-dynamical a_{i} !

Motivations for holographic superconductors Holography at finite temperature and density and phase transitions Conductivity

. **Dynamical** *a^µ* **in holography**

 \bullet impose a dynamical equation for a_μ

$$
\mathsf{J}^\mu+\frac{1}{g_b^2}\partial_\nu\mathcal{F}^{\nu\mu}+\mathsf{J}^\mu_{\mathsf{ext}}=0
$$

Here, for generality, we have added a kinetic term for *aµ* and a background external current J_{ext}^{μ}
Then we must add to *S* the following term

$$
\int d^dx \left[-\frac{1}{4g_b^2} \mathcal{F}_{\mu\nu}^2 + A_\mu J_{ext}^\mu \right]_{z=0}
$$

Motivations for holographic superconductors Holography at finite temperature and density and phase transitions Conductivity

. **Dynamical** *a^µ* **in holography**

impose a **dynamical equation for** *aµ*

$$
\mathsf{J}^\mu+\frac{1}{g_b^2}\partial_\nu\mathcal{F}^{\nu\mu}+\mathsf{J}^\mu_{\mathsf{ext}}=0
$$

Here, for generality, we have added a kinetic term for *aµ* and a background external current J_{ext}^{μ}
Then we must add to *S* the following term

$$
\int d^dx \left[-\frac{1}{4g_b^2} \mathcal{F}_{\mu\nu}^2 + A_\mu J_{ext}^\mu \right]_{z=0}
$$

by using $J_\mu = \frac{L^{d-3}}{a^2}$ *g* 2 *z* ³*−dFzµ|z*=⁰

$$
\frac{{\mathcal L}^{d-3}}{g^2}z^{3-d}{\mathcal F}_z{}^\mu\Big|_{z=0}+\frac{1}{g_b^2}\partial_\nu{\mathcal F}^{\nu\mu}\Big|_{z=0}+J_{\text{ext}}^\mu=0
$$

This is an AdS-boundary condition of the Neumann type

Alberto Salvio *Superconductivity, Superfluidity and holography*

Dynamical gauge fields in holography Vortices

. **Dynamical** *a^µ* **in holography**

$$
\frac{\lfloor d^{-3} \rfloor}{g^2} z^{3-d} \mathcal{F}_z^{\;\mu} \Big|_{z=0} + \frac{1}{g_b^2} \partial_\nu \mathcal{F}^{\nu \mu} \Big|_{z=0} + J_{\text{ext}}^\mu = 0
$$

Dynamical gauge fields in holography Vortices

. **Dynamical** *a^µ* **in holography**

$$
\frac{\mathcal{L}^{d-3}}{g^2}z^{3-d}\mathcal{F}_z^{\mu}\Big|_{z=0}+\frac{1}{g_b^2}\partial_\nu\mathcal{F}^{\nu\mu}\Big|_{z=0}+\mathcal{J}_{\text{ext}}^{\mu}=0
$$

 $d = 3 + 1$ **case**

$$
J_{\mu}
$$
 is logarithmically divergent:

$$
\frac{1}{z}\mathcal{F}_{z\mu}\Big|_{z=0} = -\partial^{\nu}\mathcal{F}_{\nu\mu}\ln z\Big|_{z=0} + \dots
$$

We can absorb the divergence in $\frac{1}{g_b^2} \partial_\nu \mathcal{F}^{\nu \mu} \Big|_{z=0}$ to define a renormalized electric charge g_0 in the normal phase ($\Phi_{\text{cl}} = 0$):

$$
\frac{1}{g_0^2} = \frac{1}{g_b^2} - \frac{L}{g^2} \ln z|_{z=0} + \text{finite terms}
$$

. *aµ* **breaks conformal invariance** (the same is true for any $d > 4$)

Dynamical gauge fields in holography Vortices

. **Dynamical** *a^µ* **in holography**

$$
\frac{L^{d-3}}{g^2}z^{3-d}\mathcal{F}_z^{\mu}\Big|_{z=0} + \frac{1}{g_b^2}\partial_{\nu}\mathcal{F}^{\nu\mu}\Big|_{z=0} + J^{\mu}_{\text{ext}} = 0
$$

d = 3 + 1 **case**

$$
\underline{d=2+1\; \text{case}}
$$

$$
J_\mu
$$
 is logarithmically divergent:

$$
\frac{1}{z}\mathcal{F}_{z\mu}\Big|_{z=0} = -\partial^{\nu}\mathcal{F}_{\nu\mu}\ln z\Big|_{z=0} + \dots
$$

We can absorb the divergence in $\frac{1}{g_b^2} \partial_\nu \mathcal{F}^{\nu \mu} \Big|_{z=0}$ to define a renormalized electric charge g_0 in the normal phase ($\Phi_{\rm cl} = 0$):

$$
\frac{1}{g_0^2}=\frac{1}{g_b^2}-\frac{L}{g^2}\ln z|_{z=0}+\text{finite terms}
$$

. (the same is true for any *d >* 4) *aµ* **breaks conformal invariance** no divergence *⇒* we can take $g_b\to\infty$ so $\frac{1}{g_b^2} \partial_\nu \mathcal{F}^{\nu \mu} \Big|_{z=0}^z \to 0$

. see also **[Witten, 2003] In this case** *aµ does not* **break conformal invariance and can be considered as an emerging phenomenon**: its kinetic term is induced by the dynamics

Introduction Holographic model (gauge/gravity correspondence) Holographic Superfluids vs Superconductors Holographic insulate Conclusions

Dynamical gauge fields in holography Vortices

. **Vortex solutions in holographic superfluids**

Vortex ansatz: $\Psi = \psi(z, r) e^{in\phi}$, $A_0 = A_0(z, r)$, $A_\phi = A_\phi(z, r)$,

AdS-boundary conditions: $s = 0$, $\mu = constant$,

 $a_{\phi} = A_{\phi}|_{z=0} = \frac{1}{2}Br^2$ (Dirichlet boundary condition)

Dynamical gauge fields in holography Vortices

r

r

. **Vortex solutions in holographic superfluids**

Vortex ansatz: $\Psi = \psi(z, r) e^{in\phi}$, $A_0 = A_0(z, r)$, $A_\phi = A_\phi(z, r)$,

AdS-boundary conditions: $s = 0$, $\mu = constant$,

 $a_{\phi} = A_{\phi}|_{z=0} = \frac{1}{2}Br^2$ (Dirichlet boundary condition)

Dynamical gauge fields in holography Vortices

. **Vortex solutions in holographic superconductors**

Vortex ansatz: $\Psi = \psi(z, r) e^{in\phi}$, $A_0 = A_0(z, r)$, $A_\phi = A_\phi(z, r)$

AdS-boundary conditions: $s = 0$, $\mu = constant$,

*L d−*3 $\left.\frac{d-3}{g^2}z^{3-d}\partial_z A_\phi\right|_{z=0}+\frac{1}{g_b^2}r\partial_r\left(\frac{1}{r}\partial_r A_\phi\right)\Big|_{z=0}=0\,,\,\,\,(\text{for }J^\mu_{\textsf{ext}}=0)$

r

The compactified higher dimensional model An alternative to compactification: the dilaton

. **Holographic insulator/superconductor transition**

- The model above realizes a conductor/superconductor transition
- Does a holographic insulator/superconductor transition exist?

The compactified higher dimensional model An alternative to compactification: the dilaton

. **Holographic insulator/superconductor transition**

- The model above realizes a conductor/superconductor transition
- Does a holographic insulator/superconductor transition exist?
- Motivations: some HTSC (the cuprates) show such transition in their phase diagrams. So called Mott insulators, which exhibit an antiferromagnetic (AF) insulating behavior, are turned into superconductors under doping; if the dopant concentration is high enough **[Lee, Nagaosa,Wen, 2006]**

An alternative to compactification: the dilaton

. **Holographic insulator/superconductor transition**

- The model above realizes a conductor/superconductor transition
- Does a holographic insulator/superconductor transition exist?
- Motivations: some HTSC (the cuprates) show such transition in their phase diagrams. So called Mott insulators, which exhibit an antiferromagnetic (AF) insulating behavior, are turned into superconductors under doping; if the dopant concentration is high enough **[Lee, Nagaosa,Wen, 2006]**

Holography also overcomes the challenge to describe *insulating* materials that display superconductivity at low enough temperatures **[Nishioka, Ryu, Takayanagi, 2009; Salvio 2012]**

Holographic model (gauge-gravity correction
\nHolographic Superfluids vs Superconductors
\nHolographic Superfluids vs Superconductors
\nAn alternative to compactification: the dilaton
\nCholography we comparable byupntants
\nOn logarithmic functions: motivations
\nIn holography we compatible with symmetry
$$
10(d - 1) \times U(1)
$$
 or Poincaré $(d - 2, 1) \times U(1)$
\nBlack Hole (deconfined) phase: a conductor
\n
$$
ds^2 = \frac{L^2}{z^2} \left[-f(z)dt^2 + dy^2 + dy^2 + \frac{dz^2}{f(z)} \right]
$$
\n
$$
f(z) = 1 - (z/z_h)^d, \ z_h = d/4\pi T, \ \text{Favorable for } R > 1/2\pi T \text{ (at } \mu = 0)
$$
\n"Solution" (confined) phase (Witten, 1998; Horowitz, Myers, 1998): an insulator
\n
$$
ds^2 = \frac{L^2}{z^2} \left[-dt^2 + f(z)dy^2 + dy^2 - 2 + \frac{dz^2}{f(z)} \right]
$$
\n"f(z) = $1 - (z/z_0)^d$, $z_0 = dR/2$, Favorable for $R < 1/2\pi T$ (at $\mu = 0$)

the transition between them occurs at *µ* and/or *T* around 1*/R* (known as a Hawking-Page transition (1983))

.

Holographic in-sudator/superphic inevolution
\nHolographic Superfluids vs superconductors
\nHolographic Superfluids vs superconductors
\nConductors: superconductors: motivations
\nIn holography we compactify a spatial dimension:
$$
\chi \sim \chi + 2\pi R
$$

\nWe have two static metrics with symmetry $10(d - 1) \times U(1)$ or Poincaré $(d - 2, 1) \times U(1)$
\nBlack Hole (deconfined) phase: a conductor
\n
$$
ds^2 = \frac{L^2}{z^2} \left[-f(z)dt^2 + d\chi^2 + dy_{d-2}^2 + \frac{dz^2}{f(z)} \right]
$$
\n
$$
f(z) = 1 - (z/z_h)^d, \ z_h = d/4\pi T, \ \text{Favorable for } R > 1/2\pi T \text{ (at } \mu = 0)
$$
\n
$$
\text{``Solution'' (confined) phase (Witten, 1998; Horowitz, Myers, 1999]: an insulator\n
$$
ds^2 = \frac{L^2}{z^2} \left[-dt^2 + f(z) d\chi^2 + dy_{d-2}^2 + \frac{dz^2}{f(z)} \right]
$$
\n
$$
f(z) = 1 - (z/z_0)^d, \ z_0 = dR/2, \ \text{Favorable for } R < 1/2\pi T \text{ (at } \mu = 0)
$$
\n• the transition between them occurs at μ and/or T around $1/R$
\n(know as a Hawking-Page transition (1983))
\n• both phases exhibit SC behavior: below $T \sim 1/R$ and increasing μ , one finds first
\n1.81 (1.70)
$$

.

For the soliton (with no metric backreaction)
$$
R_c \simeq \frac{1.61(1.70)}{\mu}
$$
, for $d = 2+1(3+1)$
Alberto Salvio *Superconductivity, Superfluidity and holography*

The compactified higher dimensional model An alternative to compactification: the dilaton

. **Conductivity in the confined phase: insulator**

Conclusions

There is no horizon and the DC conductivity vanishes *→* **we have an insulator** reason: the system has a gap

The compactified higher dimensional model And in the dilaton: the dilator

. **Conductivity in the confined phase: insulator**

Conclusions

- There is no horizon and the DC conductivity vanishes *→* **we have an insulator** reason: the system has a gap
- Fluid mechanical interpretation of an insulator: a solid

In principle, there are *two ways* to turn on an external magnetic field *H*:

In principle, there are *two ways* to turn on an external magnetic field *H*:

Introduction Holographic model (gauge/gravity correspondence) Holographic Superfluids vs Superconductors Holographic insulator/superconductor transitions: motivated by cuprates Conclusions The compactified higher dimensional model An alternative to compactification: the dilaton . **Magnetic fields in the presence of a compact space-dimension**

In principle, there are *two ways* to turn on an external magnetic field *H*:

. dimension only as a tool to have a gapped system. We focus on the possibility on the left because here we interpret the compact extra

For an analysis of the second possibility see **[Montull, Pujolas, Salvio, Silva, 2011, 2012] `**

Introduction Holographic model (gauge/gravity correspondence) Holographic Superfluids vs Superconductors Holographic insulator/superconductor transitions: motivated by cuprates Conclusions The compactified higher dimensional model An alternative to compactification: the dilaton

$H = H_{perp}$ in the holographic insulator/superconductor transition

Vortex ansatz (for $d \ge 4$): $\Psi = \psi(z, r) e^{in\phi}$, $A_0 = A_0(z, r)$, $A_{\phi} = A_{\phi}(z, r)$,

AdS-boundary conditions: $s = 0$, $\mu = constant$,

 $a_{\mu} = A_{\mu}|_{z=0} = \frac{1}{2}Br^2$ (Dirichlet boundary condition)

 \bullet Solid lines: holographic model for $d = 3 + 1$

Dashed lines: GL model (with its parameters determined as before)

Dashed lines: GL model (with its parameters determined as before) **Alberto Salvio** *Superconductivity, Superfluidity and holography*

Introduction Holographic model (gauge/gravity correspondence) Holographic Superfluids vs Superconductors Holographic insulator/superconductor transitions: motivated by cuprates Conclusions The compactified higher dimensional model Actification: the dilator

. *H* = *H*perp **in the holographic insulator/superconductor transition**

Vortex ansatz (for $d \ge 4$): $\Psi = \psi(z, r) e^{in\phi}$, $A_0 = A_0(z, r)$, $A_{\phi} = A_{\phi}(z, r)$,

AdS-boundary conditions: $s = 0$, $\mu = constant$,

$$
\frac{L^{d-3}}{g^2}z^{3-d}\partial_z A_{\phi}\Big|_{z=0} + \frac{1}{g_b^2}t\partial_r\left(\frac{1}{t}\partial_r A_{\phi}\right)\Big|_{z=0} = 0, \text{ (for } J_{ext}^{\mu} = 0)
$$
\n
\n1.0\n
\n0.8\n
\n0.030\n
\n0.02\n
\n0.030\n
\n0.030\n
\n0.030\n
\n0.030\n
\n0.030\n
\n0.031\n
\n0.030\n
\n0.031\n
\n0.032\n
\n0.038\n
\n0.030\n
\n0.030\n
\n0.031\n
\n0.030\n
\n0.031\n
\n0.032\n
\n0.038\n
\n0.030\n
\n0.030\n
\n0.031\n
\n0.030\n
\n0.031\n
\n0.030\n
\n0.031\n
\n0.030\n
\n0.031\n
\n0.030\n
\n0.030\n
\n0.031\n
\n0.030\n
\n0.031\n
\n0.030\n
\n0.031\n
\n0.030\n
\n0.031\n
\n0.030\n
\n0.031\n
\n0.030\n
\n0.030\n
\n0.031\n
\n0.030\n
\n0.030\n
\n0.031\n
\n0.030\n
\n0.030\n
\n0.031\n
\n0.030\n
\n0.031\n
\n0.030\n
\n0.031\n
\n0.030\n
\n0.031\n
\n0.030\n
\n0.030\n
\n0.031\n
\n0.030\n
\n0.030\n
\n0.031\n
\n0.030\n
\n0.030\n
\n0.030\n
\n0.030\n
\n0.030\n
\n0.031\n
\n0.030\n
\n0.030\n
\n0.030\n
\n0.030\n
\n0.030\n
\n0.030\n

Plots: H_{c1} and H_{c2} versus *R* from holography for $d = 3 + 1$ and g_b chosen to satisfy $g_0^{-1} (R = R_c) \simeq$ 1.7 L/g^2

. *Hc*¹ *< Hc*² for every *R*, **so also in this phase the holographic superconductor is of Type II, like the high-temperature superconductors**

The compactified higher dimensional model An alternative to compactification: the dilaton

. **Dilaton-Gravity**

An (approximate) insulating normal phase can also be obtained with a dilaton

Other reasons for dilatonic extensions are

- Charged dilaton black holes have more physical low-temperature behavior **[Charmousis, Gouteraux, Kim , Kiritsis, Meyer, 2010]**
- Dilatons typically emerge in low-energy effective descpritions of string theories

Introduction Holographic model (gauge/gravity correspondence) Holographic Superfluids vs Superconductors Holographic insulator/superconductor transitions: motivated by cuprates Conclusions The compactified higher dimensional model An alternative to compactification: the dilaton

. **Dilaton-Gravity**

An (approximate) insulating normal phase can also be obtained with a dilaton

Other reasons for dilatonic extensions are

- Charged dilaton black holes have more physical low-temperature behavior **[Charmousis, Gouteraux, Kim , Kiritsis, Meyer, 2010]**
- Dilatons typically emerge in low-energy effective descpritions of string theories

The gravity action:

$$
S_{\text{gravity}} = \frac{1}{16\pi G_N} \int d^4x \, \sqrt{-g} \left[\mathcal{R} - (\partial_\alpha \phi)^2 - V(\phi) \right]
$$

The most general static asymptotically AdS planar black hole with two-dimensional rotation and translation invariance has recently been derived **[anabalon, 2012] ´** *. This allows us to extend the previous analysis to general dilaton-gravity model in the limit* $G_N \rightarrow 0$ *.*

In particular we have

$$
\phi(z) = \sqrt{\frac{\nu^2 - 1}{2}} \ln(1 + z/L)
$$

The compactified higher dimensional model An alternative to compactification: the dilaton

. **Holographic model for superfluid phase transitions**

$$
S=S_{\text{gravity}}+\int d^4x\,\sqrt{-g}\left\{-\frac{Z_A(\phi)}{4g^2}\mathcal{F}_{\alpha\beta}^2-\frac{Z_{\psi}(\phi)}{L^2g^2}|D_{\alpha}\Psi|^2\right\}
$$

the dilaton couples to A_α and Ψ through two *generic* functions $Z_A(\phi)$ and $Z_\psi(\phi)$

There are no special requirements for the Zs at this level, besides the fact that they should be regular and nonvanishing for any φ in order for the semiclassical approximation to be valid

Again one can show that

- There is a superfluid phase transition at small enough *T* and big enough *µ*
- There are vortex solutions both in the superfluid and in the superconductor case

The compactified higher dimensional model An alternative to compactification: the dilaton

. **Conductivity**

We can study the conductivity using the same approach we used without the dilaton

Introduction

One can show

$$
\lim_{\omega\to 0} \text{Re}[\sigma] = \frac{1}{g^2} Z_A|_{z=z_h}
$$

→ the DC conductivity can be suppressed or enhanced depending on *ZA*(*φ*)

Example: $Z_A(\phi) = e^{\gamma \phi}$, the bigger γ the bigger the DC conductivity, *while a large negative value of γ corresponds to an approximate insulating behavior*. This effect is even stronger at low temperatures

$$
\lim_{\omega\to 0} \text{Re}[\sigma] \sim T^{-\gamma\sqrt{(\nu^2-1)/2}}
$$

. (non-ideal)insulator/superconductor one at low *T* For a *ZA*(*φ*) such that the DC conductivity is small for *φ 6*= 0 the superfluid phase transition is a conductor/superconductor transition at high *T* and a

Effective field theory description and comparison between superfluids and superconductors

. **Conclusions**

- *Effective field theory description and comparison between superfluids and superconductors*
- *Holography at finite T , µ and phase transitions: an interesting connection between gravitational physics and condensed matter*
- *We can study the conductivity holographically. The presence of the horizon implies the DC conductivity never vanishes*

. **Conclusions**

- *Effective field theory description and comparison between superfluids and superconductors*
- *Holography at finite T , µ and phase transitions: an interesting connection between gravitational physics and condensed matter*
- *We can study the conductivity holographically. The presence of the horizon implies the DC conductivity never vanishes*
- *We introduced genuine holographic superconductors by promoting the gauge field to a dynamical object*
- *This is important e.g. to study holographically superconducting vortices (we did so and compared them to superfluid vortices)*

. **Conclusions**

- *Effective field theory description and comparison between superfluids and superconductors*
- *Holography at finite T , µ and phase transitions: an interesting connection between gravitational physics and condensed matter*
- *We can study the conductivity holographically. The presence of the horizon implies the DC conductivity never vanishes*
- *We introduced genuine holographic superconductors by promoting the gauge field to a dynamical object*
- *This is important e.g. to study holographically superconducting vortices (we did so and compared them to superfluid vortices)*
- *This discussion can be extended to holographic models with insulating normal phase (as observed in cuprate high-temperature superconductors): it can be realized by introducing an extra compactified dimension or through a dilatonic field*

Introduction Holographic model (gauge/gravity correspondence) Holographic Superfluids vs Superconductors Holographic insulator/s Conclu

. **Conclusions**

- *Effective field theory description and comparison between superfluids and superconductors*
- *Holography at finite T , µ and phase transitions: an interesting connection between gravitational physics and condensed matter*
- *We can study the conductivity holographically. The presence of the horizon implies the DC conductivity never vanishes*
- *We introduced genuine holographic superconductors by promoting the gauge field to a dynamical object*
- *This is important e.g. to study holographically superconducting vortices (we did so and compared them to superfluid vortices)*
- \bullet *This discussion can be extended to holographic models with insulating normal phase (as observed in cuprate high-temperature superconductors): it can be realized by introducing an extra compactified dimension or through a dilatonic field*

Outlook

- *Applications of the method to introduce a dynamical gauge field in holography to color superconductivity*
- *Extension of the insulator/superconductor models to describe a bigger portion of (or even the complete) phase diagram of cuprate high-temperature superconductors*