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Abstract

The role played by non-extensive thermodynamics [1] in physical systems has been under intense
debate for the last decades. Some possible mechanisms that could give rise to non extensive stati-
stics have been formulated along the last few years, in particular the existence of a fractal structure
in thermodynamic functions for hadronic systems [2]. We investigate the properties of such fractal
thermodynamical systems and propose a diagrammatic method for calculations of relevant quan-
tities. Finally, the fractal scale invariance 1s discussed in terms of the Callan-Symanzik equation.

1. Tsallis Statistics and QCD Thermodynamics

9 constitutes a generalization of Boltzmann-Gibbs (BG) statistics, under the as-
sumption that the entropy of the system is non-additive. For two independent systems A and B

Sa+s=3Sa+ S+ (1 —q)SaSs, (1)

where the entropic index ¢ measures the degree of non-extensivity [1]. Let us define the g-
exponential e\ (x) = [1 £ (g — 1)x]=/@~1 | with e\ (x) defined for x > 0 and e\ (x) for x < 0,
and the g-log function log!”)(x) = £(x*%") —1)/(g— 1). Then the grand-canonical partition
function for a non-extensive ideal quantum gas 1s [3]
(r)
) [ €4 (x) =S
( (’,.) I (2)

where x = B(E, — 1), the particle energy is E, = \/ p?+m?, with m being the mass and u the
chemical potential, ¢ = 41 for bosons and fermions respectively, and ® is the step function.
Eq. (2) reduces to the Bose-Einstein and Fermi-Dirac partition functions in the limit g — 1.
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@ The in the confined phase can be studied
within the HRG approach, which 1s based on the assumption that physical observables in this phase
admit a representation in terms of hadronic states which are treated as non-interacting and point-
like particles [4]. These states are taken as the conventional hadrons listed in the review by the
Particle Data Group. Within this approach the partition function 1s then given by [3, 5]

logZ,(V, T, {u}) =} logZy(V, T, i), (3)

where U; refers to the chemical potential for the i-th hadron. We summarize our results in Fig. 1.
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Fig. 1: Left: Chemical freeze-out line T = T (Ug). Right: Equation of State (EoS).

It 1s possible to impose the identity
P(U) OCPTF(S), (9)

corresponding to a self-similar solution for the thermofractal probability distribution. Then, the
simultaneous solution for Egs. (8) and (9) 1s obtained with [7, 8]
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Of course one has € = Zﬁ-\il g , so that at the first level of the thermofractal hierarchy one finds

subsystems that are thermofractals with effective energies £!) ~ & /N. The distribution of thermo-

. . . 2(1—
fractals then obeys Tsallis statistics with 7 = %T andg— 1= %(1 — V).

3. Diagrammatic Representation and Callan-Symanzik Equation

2. Tsallis Statistics and Thermofractals

@ The emergence of the non-extensive behavior has been attributed to different causes: long-range
interactions, correlations and memory effects [6]; temperature fluctuations; and finite size of the
system. We will study a natural derivation of non-extensive statistics in terms of Thermofractals.
These are systems in thermodynamical equilibrium presenting the following properties [2, 7]:

1. 1s given by:
U=F+FL, 4)
where F = kinetic energy, and E = internal energy of N’ constituent subsystems.
2. : the distribution Prg(E) is self-similar or self-affine ==
at some level of the subsystem hierarchy Prr(E) is equal to those in the other levels.
3. At level n the that one can consider Prg(E,)dE, = pdE,.

@ The energy distribution of a thermodynamical system 1s given, according to BG statistics, by
P(U)dU = Aexp(—U /kT)dU, (5)

where A 1s a normalization constant. The phase space, in the case of thermofractals, must inclu-
de momentum degrees of freedom of free particles as well as the internal degrees of freedom.
According to property 2 of self-similar thermofractals [2], the internal energy 1s given by

F e L
dE = — [Prr(€)]" de — == 6
(o)’ de, = ©)
where Vv 1s an exponent to be determined. Then, the total energy distribution is given by
ol €
P(U)dU = AF7T] exp <_k_T> dF [Pre(€)]" de, oa=1+ e (7)

with N' = N + % an effective number of particles taking into account the internal degrees of free-
dom. After integration in F', the thermodynamical potential 1s given by

e ]3N/2

Q= / dUP(U) = /O A [1 e P(e)]"de, A=T BN] (kT)VA’. (8)

@ Thermofractals are scale invariant, and this should be accomplished with the scale invariance
of the distribution of kinetic and internal energy. Then

FO g A E®n) /1\TD
7O 70w T EO (N) ’ (b
where . From the thermofractal structure one can obtain the fractal

dimension of hadrons, resulting in D = 0.69 [2], a value close to that resulting from intermittence
analysis [9]. It 1s possible to have a diagrammatic representation of the probability densities of
thermofractals that can facilitate calculations of € and other relevant quantities [8]. The basic
diagrams are summarized in Fig. 2.
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Fig. 2: Left: Basic diagrams for thermofractals and their mathematical expressions. Right: Exam-
ple of a tree graph representing different levels of a thermofractal.

@ On the other hand, the vertex function of thermofractals can be written in the form

- N
[(E,e,T) o< (kT) 17P)g H(znk—T’_) Pre(g)]" . (12)
i=1 !

Then one can derive the Callan-Symanzik equation for thermofractals, which writes

Mt} B+ Bem-+7| T =0, (13)

where m; = E; 1s the thermofractal mass, which 1s identified with the thermofractal internal energy,

Bmi 8g

=M : s = M— 14
and we have defined the
1 I N /2
— Al m(Pi)et/d ' 2 /g2
g(magat) — gllz—! Prp ( M, y 1= —leg(M /MO) . (15)

4. Conclusions

@ We have reviewed the in the form of Tsallis statistics of a quantum gas
at finite 7" and 1, and applied it to study the EoS and phase diagram of QCD.

@ We have investigated the structure of a thermodynamical system presenting fractal properties,
and shown that it naturally leads to non-extensive statistics.

@ A diagrammatic formulation for practical calculations with the fractal structure was introduced.

@ Based on the scale invariance of thermofractals, the Callan-Symanzik equation was obtained.
This opens the opportunity to develop a field theoretical approach’ for thermofractals, leading
to a possible theoretical understanding of the non-extensive properties of hadronic systems [10].
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