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Abstract

We present a general study of 3-point functions of conformal field theory in momentum space, fol-
lowing a reconstruction method for tensor correlators, based on the solution of the conformal Ward
identities (CWI’s), introduced in recent works by Bzowski, McFadden and Skenderis (BMS). We investig-
ate and detail the structure of the CWI’s and their non-perturbative solutions, and compare them to
perturbation theory, taking QED and QCD as examples.

Introduction

Exact results in conformal field theories (CFT’s) have gathered a lot of attention along the
years, mostly because the symmetry of such theories has been essential for determining
the structure of the correlators, especially for 2- and 3-point functions. Such analysis have
traditionally been performed in coordinate space, by imposing on correlation functions the
corresponding conformal Ward identities (CWI’s) that are solved far more easily in this
case [1]. The solutions of the conformal constraints are determined up to few constants,
which characterize the conformal class of a specific CFT. For instance the 〈T JJ〉 correlator
can be expressed, in general d dimensions, as
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showing that only one independent constant is left free to parametrize the correlator in d
dimensions. For the 〈T T T 〉 case
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In the case of a Lagrangian realization, the constants are determined by the field content,
i.e. the number of scalars, fermions, vectors etc. appearing in the Lagrangian, and for a
sufficient number of independent family sectors and particle multiplicities, they are expected

to saturate the exact solutions. The latter, obviously, are valid beyond perturbation theory

and are parametrised by the same number of independent constants.

Reconstruction in Momentum Space

In momentum space this analysis becomes quite involved. The reconstruction method in-
troduces a minimal set of form factors that can reconstruct the entire correlator. Starting
from their transverse traceless parts it is possible to build up the entire correlator using the
canonical Ward identities. For the 〈T JJ〉 for example
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The transverse and traceless part can be decomposed into simple tensors using a particu-
lar prescription of the momenta as
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where the form factors depend on the momenta. It is worth mentioning that the construction
of the transverse and traceless part is symmetric in all the momenta and indices. In the
same way one can obtain the analogous decomposition for the 〈T T T 〉 case. At this stage the

main aim is to find the form factors Ai and for this reason one can exploit the action of

the special conformal operator Kκ on the transverse and traceless part, obtaining a set of
scalar equations of the form

K31A1 = 0 K31A2 = 2A1 K31A3 = −4A1 K31A4 = −2A3(p2↔ p3)
K21A1 = 0 K21A2 = 2A1 K21A3 = 0 K21A4 = −2A3.

These equations, called primary CWI’s, are solved in terms of 3K integrals (i.e. integrals of

three Bessel functions). Then, another set of conformal equations, called secondary CWI’s,
will fix the solutions modulo only one arbitrary constant for the 〈T JJ〉 case and two for 〈T T T 〉
case. For instance
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and so on for the other form factors. Notice that for odd spacetime dimensions d the Bessel
functions K can be written as
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We have showed in [2] how to solve this conformal equations in terms of generalized hyper-

geometric functions. For instance, in the case of A1 form factor we obtain
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The general solution of the CWI’s depends on two independent constants for 〈T T T 〉 and only
one arbitrary constant for the 〈T JJ〉. The study of the correspondence between perturbative
and non-perturbative solutions is performed, in perturbation theory, by the inclusion 2 sectors
(fermion and scalar) in general d dimensions, with the addition of a gauge sector in d = 4,
depending on the specific correlator

Perturbative solutions

The general solution, derived from the conformal constraints, gets very involved in the pres-
ence of divergences and requires an entirely new regularization procedure for such 3K

integrals. Notice that such integrals are not the master integrals of perturbation theory, and
cannot be handled by the ordinary reduction procedures which are typical of analysis in per-
turbative QCD at higher orders. This motivate us to reconsider the BMS reconstruction [4]
by checking its equivalence to the perturbative results in order to proceed with their simpli-
fication. The matching between the non-perturbative and the perturbative solution, and the
check of their equivalence, has been done by working in d = 3 and d = 5 dimensions. For in-
stance, the conformal perturbative realizations for the Abelian 〈T JJ〉 can be done using the
perturbative actions
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which allow to calculate the diagrams
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whose topologies appear both in the Abelian and in the non Abelian cases. The conformal
perturbative realizations for the 〈T T T 〉 in the Abelian and non Abelian correlator can be
obtained from the actions
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by computing the diagrams
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Notice that the gauge fields contribute only in the case of d = 4. The explicit expressions of
the form factors in d = 3 and d = 5 for the 〈T JJ〉 and 〈T T T 〉 are calculated using the star-

triangle relations in order to express the scalar integrals B0 and C0. For instance in d = 3
we obtain

A1,T JJ =
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where the expression on the left refers to the perturbative result and the one on the right is
the non-perturbative one. Similar results hold for the 〈T T T 〉 (three-graviton vertex).

Conclusions

The form factors computed in perturbation theory satisfy the same anomalous conformal
Ward identities as the non-perturbative ones, in d = 4. They both satisfy CWI’s in general
(d) dimensions. In d = 3 and d = 5 the two solutions completely match. We conclude that,
at least for these correlation functions, free field theory in momentum space at one

loop provide the same information derived from the non-perturbative solutions, and

the two can be freely interchanged, being equivalent. This implies that there should be
significant cancellations among the contributions of the 3K integrals or among those given
by us in the form of hypergeometric functions, in such a way that they can be expressed
in terms of the elementary master integrals B0 and C0, directly derived from perturbation
theory.
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