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Pseudoscalar Mesons of Goldstone Nature

The Goldstone theorem necessitates the presence of a massless boson in the

physical particle spectrum for every spontaneously broken chiral symmetry

of quantum chromodynamics (QCD); these Goldstone bosons are identified

with the ground-state pseudoscalar mesons (pions, kaons, and η), with their

finite (but comparatively small) masses attributed to the additional explicit

breakdown of the chiral symmetries induced by nonvanishing quark masses.

We analyze the Goldstone-boson nature of the lightest pseudoscalar mesons

within a formalism[1,2] positioned somewhere between the fully relativistic

Bethe–Salpeter approach to bound states[3], with several yet to be resolved

inherent obstacles, and the latter’s extreme instantaneous limit represented

by its three-dimensional reduction devised by Salpeter[4]. A very promising

tool to judge the merits of this kind of intermediate framework proves to be,

among others, the fulfilment of generalized Gell-Mann–Oakes–Renner-type

relations[5] by the characteristic properties of light pseudoscalar mesons[6].

Quark–Antiquark Bound State Formalism

The homogeneous Bethe–Salpeter equation describes in Poincaré-covariant

manner a bound state |B(P )〉 of mass M̂ and momentum P built up by two

particles of relative momentum p by its Bethe–Salpeter amplitude Φ(p, P ).

One ingredient are the bound-state constituents’ full propagators, given, for

spin-12 fermions, by massMi(p
2) and wave-function renormalization Zi(p

2):

Si(p) =
iZi(p

2)

6p−Mi(p2) + i ε
, 6p ≡ pµ γµ , ε ↓ 0 , i = 1, 2 .



The interactions responsible for the formation of bound states are the other

ingredient. Ignoring their dependence on time components of momenta and

both propagators’ dependence on the momentum zero components squared

allowed us to devise a bound-state equation[1] for the Salpeter amplitude[4]

φ(p) ∝
∫

dp0Φ(p, P ) ,

where the (by assumption instantaneous) effective interactions experienced

by the bound-state constituents are captured by an integral kernelK(p, q).

Our equation reads, in terms of free energies and apposite energy projectors

Ei(p) ≡
√
p2 +M 2

i (p
2) , Λ±

i (p) ≡
Ei(p)± γ0 [γ · p +Mi(p

2)]

2Ei(p)
,

for fermion–antifermion bound states in the center-of-momentum frame[1],

φ(p) = Z1(p
2)Z2(p

2)

∫
d3q

(2π)3

(
Λ+
1 (p) γ0 [K(p, q)φ(q)] Λ−

2 (p) γ0

M̂ − E1(p)− E2(p)

− Λ−
1 (p) γ0 [K(p, q)φ(q)] Λ+

2 (p) γ0

M̂ + E1(p) + E2(p)

)
.

For one-particle states |B(P )〉 normalized Lorentz-invariantly according to

〈B(P )|B(P ′)〉 = (2π)3 2P0 δ
(3)(P − P ′) ,

the normalization condition of the corresponding Salpeter amplitudes reads
∫

d3p

(2π)3
Tr

[
φ†(p)

γ0 [γ · p +M1(p
2)]

E1(p)
φ(p)

]
= 2P0 .

Assuming Generalized Flavour Symmetry

Things simplify considerably if the propagator functions of antifermion and

fermion happen to be identical. The Salpeter amplitude of any pseudoscalar

bound state is fully defined by just two Lorentz-scalar components, ϕ1,2(p):

φ(p) =
1√
3

[
ϕ1(p)

γ0 [γ · p +M(p2)]

E(p)
+ ϕ2(p)

]
γ5 .



IfK(p, q) is compatible with spherical and specific Fierz symmetries of the

effective interactions, our bound-state equation governing φ(p) collapses to

an eigenvalue problem[7] fixing the radial parts ϕ1,2(p), p ≡ |p|, of ϕ1,2(p),

with the effective interactions between bound-state constituents encoded in

a single spherically symmetric configuration-space potential V (r), r ≡ |x|:

E(p)ϕ2(p) +
2Z2(p2)

π p

∞∫

0

dq q dr sin(p r) sin(q r)V (r)ϕ2(q) =
M̂

2
ϕ1(p) ,

E(p)ϕ1(p) =
M̂

2
ϕ2(p) .

The interaction potential V (r) was determined pointwise[2] by inversion[8]

of our Bethe–Salpeter-inspired bound-state formalism[1], starting from the

Salpeter amplitude φ(p) for massless pseudoscalar mesons derived from the

chiral-quark propagator[9] plus some QCDWard–Takahashi identity[5,10].

It rises confiningly from a slightly negative value at r = 0 steeply to infinity:
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Pseudoscalar-Meson Properties Revisited

In order to analyze pseudoscalar quark–antiquark bound states for physical

(or non-chiral) quark masses, we have to find the corresponding solutions to

our system of coupled equations for the radial Salpeter components ϕ1,2(p).

That task is facilitated by an obvious move, enabled by the purely algebraic

nature of one of these relations: Inserting any of these into the other leads to

single explicit eigenvalue problems for either ϕ1(p) or ϕ2(p) with eigenvalue

M̂ 2 [2,7]; conversion to equivalent matrix eigenvalue problems by expansion

over a basis in function space is one of the standard solution procedures[11].

With the solutions at hand, we may then create trust in the reliability of our

approach by assessing or scrutinizing its predictions for hadron observables.

The spatial extension of the pion deduced from the ground-state solution to

our bound-state formalism in form of the pion’s average interquark distance

〈r〉 = 0.478 fm or root-mean-square radius
√

〈r2〉 = 0.529 fm fits nicely to

its observed electromagnetic charge radius
√

〈r2π〉 = (0.672±0.008) fm[12].

However, this agreement cannot qualify as confirmation of the credibility of

our framework since the Salpeter amplitude for chiral quarks served already

as input to the inversion procedure yielding the shape of the potential V (r),

and the experimental u/d quark masses are pretty close to their chiral limit.

Equating the residues of pseudoscalar-meson pole terms in axial-vector and

pseudoscalar vertex functions, entering in the axial-vectorWard–Takahashi

identity of QCD, leads to a generalization of the Gell-Mann–Oakes–Renner

relation[13]; this innovation relates, for a pseudoscalar bound state |B(P )〉,
its decay constant, fB, defined in terms of the axial-vector quark current by

〈0|: ψ̄1(0) γµ γ5 ψ2(0) :|B(P )〉 = i fB Pµ ❀ fB ∝
∫

d3pTr[γ0 γ5 φ(p)] ,

and its (vacuum-quark-condensate universalizing) in-hadron condensate [5]

CB ≡ 〈0|: ψ̄1(0) γ5ψ2(0) :|B(P )〉 ∝
∫

d3pTr[γ5 φ(p)]

to that bound state’s mass M̂B and the quark mass parameters in the QCD

Lagrangian[5]. For the case of equal quark massesm, this relationship reads

fB M̂
2
B = 2mCB .



Compatibility with this relation may be inspected by solving our formalism

with the once specified potential V (r) for bound states of chiral, u/d, and s

quarks, taking advantage of the appropriate model propagator functions[9].

Comparison of the quark massesm, fixed by the thereby predicted values of

M̂B, fB, and CB, with the current-quark massesm(µ) in modified minimal

subtraction at scale µ proves that ourm outcomes are in the right ballpark:

Constituents M̂B fB CB m m(2 GeV)

[MeV] [MeV] [GeV2] [MeV] [MeV] [12]

chiral quarks 6.8 151 0.585 0.0059 —

u/d quarks 148.6 155 0.598 2.85 3.5+0.7
−0.3

s quarks 620.7 211 0.799 51.0 96+8
−4
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