

Fission studies in Inverse Kinematics: recent results and perspectives

<u>L. Audouin</u>, L. Grente, A. Chatillon, J. Taieb and the SOFIA collaboration

Fission fragment yields : applied physics

- FF impact the dynamics of nuclear reactors
 - Delayed neutrons
 - Neutronic poisons
 - Increased influence with larger burn-ups
 - Criticality excursions : quick accumulation of FF
- FF are the main source of residual power and radioactivity
 - Shielding for used fuel handling and reprocessing
 - Loss Of Coolant Accident (LOCA)
 - Decay heat
- Fission is the termination of the r-process
 - Nucleosynthesis calculations depend on fission barriers

Fission yields : a unique probe for structure and dynamics

- How do shell effects constrain the yields ?
 - Do closed shells act as attractors ? N, Z, both ?
 - Dampening of shell effects with energy
 - Shell effects at large deformation ?
 - Are shell effects sole responsible for asymmetric fission ?
- Influence of the pairing : even-odd staggering in the yields
- Splitting of excitation energy among nascent fragments ?

Karpov A V et al. J. Phys. G: Nucl. Part. Phys. 35 035104

Several modelling of the damping of shell effects Ignatyuk et al Sov. J. Nucl. Phys 21 2555 (1975) Randrup and Moeller, Phys. Rev. C 88 064606 (2013)

Interest of Inverse Kinematics

• Heavy partner (fissioning system) as projectile

• In-flight fission

- Identification of the fragments: recoil spectrometer
- Measurement on short-lived nuclei
- High velocity FF : better (up to excellent) Z measurement
- Pioneer experiment : K.-H. Schmidt et al. (1996) : Z of both FFs
- 2010s : transfer@GANIL (see M. Camaano's talk), SOFIA@GSI

D. Rochman et al. / Nuclear Physics A 710 (2002) 3-28

30 32

56

58 60

62

The SOFIA program

- High-precision measurement (~ % on isotopic yields)
- Simultaneous identification of <u>both</u> fission fragments : <u>A & Z</u>
 - Kinetic energy
 - Deduced total prompt neutron multiplicity
- "West-looking" : products of ²³⁸U fragmentation (FRS)
 - Full identification of the fissioning system
- Large-acceptance recoil spectrometer in cave C (GSI)
- Fission trigger : Coulomb interaction
 - Large cross section (~ b)
 - Small E* : excitation of the GDR (<E>~14 MeV)
 - ²³⁶U (γ,f) ~ ²³⁵U (n,f) @ 8.2 MeV
 - 75% of first chance fission (23% 2nd chance)
 - Significant dispersion of E*: no info event-by-event

High-precision measurements

- High-precision indeed : $\sigma < 1\%$ for light and heavy fragments
- Lighter systems favor larger asymmetry

- Strong even-odd effect on Z
 - Fully decided at scission
 - Dampening due to E*
- Smaller even-odd effect on N
 - Decided by fluctuations of Sn
 - Insensitive to E*

₄₋Ag

₄₀Cc

Pd

An insight on the shape of fragments at scission

- Spherical prefragment : shorter distance at scission
- ... Hence, larger kinetic energy

Prompt-neutrons: a probe of excitation energy

- $\upsilon = A_{CN} A_{FF1} A_{FF2}$ (measured event-by-event)
- Favored de-excitation channel : directly correlated to E*
- Deformation -> excitation -> neutrons
- Even-even split : larger Q

Pre and post neutron emission mass yields

- Subtraction of higher-chance fission
- Yields are correlated: $Y(A_i) = 236 u(i,j) Y(A_j)$

$$Y(A_1, A_2) = \sum_{\nu_1=0}^{236-A_1-A_2} P^{M_1}(\nu_1) P^{M_2}(\nu_2) X(M_1)$$

Energy-sorting study through prompt-neutrons yields

SOFIA data: $\langle \nu \rangle_{LIGHT} = 1.40$, $\langle \nu \rangle_{HEAVY} = 2.26$ $\langle E^* \rangle_{1^{st} chance} = 12.4$ MeVNishio et al.: $\langle \nu \rangle_{LIGHT} = 1.42$, $\langle \nu \rangle_{HEAVY} = 1.01$ thermal neutrons

Additional excitation goes *entirely* into the heavy fragment

Energy sorting: an explanation

- K. H. Schmidt and B. Jurado
 - Phys. Rev. Lett. 104 212501 (2010)
 - Phys. Rev. C 83 061601(R) (2011)
 - Phys. Rev. C 84 059906(E) (2011)
 - Phys. Rev. C 83 014607 (2011)
- The scissioning system behaves as coupled thermostats
- At low energy (superfluid regime) T \propto A^{-2/3}
- Energy flows toward the heavy fragment

 Asymmetric fission is understood as a consequence of spherical/deformed shells

- Asymmetric fission is understood as a consequence of spherical/deformed shells
- Heavier systems tend toward double ¹³²Sn-like nuclei (symmetric)

- Asymmetric fission is understood as a consequence of spherical/deformed shells
- Heavier systems tend toward double ¹³²Sn-like nuclei (symmetric)
- For pre-actinides, closed-shell fragments lead to too large asymmetry: symmetry takes precedence

Transition to symmetry in Th isotopes

- The heavy peak sticks around Z = 54
- With lighter systems, such partition gets costly in asymmetry energy
- Coexistence and finally symmetry

- First-ever results on neutrons for light Th isotopes !
- Large reduction of the excitation energy for the symmetric fission
- Colder fissionning system ?

- Asymmetric fission is understood as a consequence of spherical/deformed shells
- Heavier systems tend toward double ¹³²Sn-like nuclei (symmetric)
- For pre-actinides, closed-shell fragments lead to too large asymmetry: symmetry takes precedence
- Asymmetry appears again for very light, neutron-deficient systems ?!

A. N. Andreyev et al. Phys. Rev. Lett. **105**, 252502

Courtesy K.H. Schmidt

Fission modes in neutron-deficient pre-actinides

- β-delayed fission at ISOLDE
- Intense theory work !
- Complex potential landscape no shell effects
- 5D calculations of Möller

N=126

+ Z distributions × Z distributions in

inverse kinematics

 Objective of the next SOFIA measurement (2019)

Summary and outlook

- New generation of fission experiments
 - High-resolution measurements
 - Exploration of the complete isotopic space of fragments
 - Wide range of fissioning systems
 - Increased number of combined observables
 - SOFIA coupling with NeuLAND : neutron tagging
 - SOFIA coupling with CALIFA : gamma multiplicity
- Measurement of the U-Pu region : ²⁴²Pu primary beam
- Exclusive experiments : (e,f) or surrogate reactions at storage ring
- Neutron-rich systems : Super-FRS exotic beams
- Detailed studies of trans-actinides
- Origin of angular momentum from fragments ?
- Fission time ?

Secondary beam identification

- Standard $Bp \Delta E ToF$ method
- High-Z fragments have a large probability to carry electron(s)

Fission fragments identification

 $\frac{\Delta E - B\rho}{A/Z} = B\rho / \beta\gamma$

Bρ: position from MWPCs Θ from the Twin-MUSIC

 ΔE : from the Twin-MUSIC

ToF: between START and ToF-wall

anode plane central cathode

> MWPC 2 (x2,y2)1.2

Twin MUSIC (ΔΕ,Θ)1.2

Active

Target

START

. . .

-Pb target -Al target -U targets

vaccum pipe

MWPC 1 (x1,y1)12 ALADIN

Coulomb-induced fission

- Large cross section (~ b)
- Small E* : excitation of the GDR (<E> ~ 14 MeV)
 - 236 U (γ ,f) ~ 235 U (n,f) @ 8.2 MeV
 - 75% of first chance fission (23% 2nd chance)
- Significant dispersion of E*: no info event-by-event
- Need to subtract nuclear contribution

Rejection of the nuclear contribution

- Selection of events $Z_1 + Z_2 = Z_{beam}$
- Limiting fragmentation regime :
 - The reaction mechanism does not depend on the target
 - Subtraction of yields obtained on Al target (renormalization)

10²

10