IWM-EC 2018 22-25 MAGGIO 2018 CATANIA

Università degli Studi di Padova

A STUDY ON 4 REACTIONS FORMING THE ⁴⁶TI*

Magda Cicerchia on behalf of NUCL-EX Collaboration

Department od Physics and Astronomy – Padua University Padua

Legnaro National Laboratory – INFN

OUTLINE

- Clustering & Pre-equilibrium in Light Nuclei
- The Experiment
- The Simulation Codes: GEMINI++ and AMD
- Analysis Results

16O

00000

14 44

000 7.27

IKEDA Diagram

20Ne

000000

1917

000

11 89

473

24Mg

0000000

28.48

0000

21,21

000

14.05

CC

13.93

Ne 9.32 ²⁸Si

0000000

38.46

31.19

0000

24.03

000

23.91

Ne 19.29 0 C 16.75

Mg

9.78

Si

NUCLEAR CLUSTERING

<u>Ikeda Diagram</u>

2N=2Z nuclei: α -cluster structure at E* close to the α -decay threshold

• W. Von Oertzen et al. Phys. Rep. 432 (2006) 43

- M. Freer et al. , Rep. Progr. Phys. 70 (2007) 2149
- J. P. Ebran et al. , Nature 487 (2012) 341
- W.N. Catford J. Phys. Conf. Series 436, 012095
- P.E. Hodgson, E. Běták, Phys. Rep. 374 (2003) 1-89

Mass number

Extended Ikeda Diagram Neutron-rich nuclei : molecular structures of clusters bound by valence neutrons

At <u>drip-lines:</u> clustering might be the preferred structural mode of the **light nuclei**.

3

- Y. Kanada-En'yo et al., Prog.Theo.Exp.Phys.01A202 (2012).
- P.E. Hodgson, E. Běták, Phys. Rep. 374 (2003) 1-89.

STUDYING CLUSTER EFFECTS

<u>Light Nuclei</u>

Coexistence of cluster and mean-fields aspects:

connection between cluster emission and nuclear structure.

<u>Medium Mass Nuclei</u>

Clustering effects on reaction dynamics can be **related** either to their **preformation or** to their **dynamical formation**.

Study the competition between evaporation (surface) and fast (volume) emission of LCP.

IMW-EC 5018 2018 CATANIA M. CICERCHIA

HOW TO STUDY THE CLUSTERING EFFECTS ON REACTION DYNAMICS?

Possible effects of a-cluster structure in the projectile

experimentally

¹⁶O projectile nucleus.

Studying pre-equilibrium particles emission:

 $^{16}O + ^{116}Sn @ 8, 12, 16 MeV/u$ Over-production of a-particles emitted during the non-equilibrium stage \rightarrow a-cluster structure in the

MPM A (n0=17) IPM A clust=10% (n0=17) 29°- 41°

A. Corsi et al., PLB 679 (2009) 197.

5

D. Fabris et al., Proceedings of the X LANSPA, Proc. of Science (2014).

Comparing LCP emission from fusion reactions with different N/Z projectiles:

And Wish of And $^{16}O + ^{65}Cu \&^{19}F + ^{62}Ni @16 MeV/u$ 19 F-reaction a-overproduction > 16 O one. $E_{s}(^{19}F \equiv \alpha + {}^{15}N) = 4,01 \text{ MeV } E_{s}(^{16}O \equiv \alpha + {}^{12}C) = 7,2 \text{ MeV}$

THE EXPERIMENT: REACTIONS MAIN CHARACTERISTICS

6

Entrance channel	e E _{beam, lab}		$oldsymbol{ heta}_{grazing}$	CN	Mass Asymm	σ_{fus}	E *	Lab. Vel.	E.R. Distrib. $ heta_{lab}$
Beam + Target	MeV	MeV/u	deg			mb	MeV	cm/ns	deg
160 + 30Si	128	8	8,8	⁴⁶ Ti	0,30	1070	98,4	1,37	0 – 30
¹⁶ O + ³⁰ Si	111	7	10,1	⁴⁶ Ti	0,30	1081	88,0	1,28	0 – 30
180 + 28Si	126	7	9,0	⁴⁶ Ti	0,22	1110	98,5	1,44	0 – 28
¹⁹ F + ²⁷ AI	133	7	8,9	⁴⁶ Ti	0,17	1100	103,5	1,52	0 – 28

some Kata Excitation ty Energy

sanspone statiliticial mocomponeeth t

IMW-EC 5079 2018 CATANIA M. CICERCHIA

REACTION MECHANISMS

end form a CN with LARGE EXCITATION ENERGY and ANGULAR MOMENTUM will DEEXCITE:

- emitting evaporation particles and residues.
- fission

Spin [ħ]

Garfield

RCo

ARFIELD

beam

THE EXPERIMENTAL ARRAY

F. Gramegna et al., Proc. of IEEE Nucl.Symp., 2004, Roma, Italy, 0-7803-8701-5/04/.

• M. Bruno et al. Eur. Phys. J. A (2013) 49: 128

LCP identification

⁵⁰⁰⁰ ⁵⁰⁰⁰ ⁶⁰⁰⁰ E_{Si} (ch)

7000 8000 9000

MAGGIO 2018 CATANIA M. CICERCHIA

IMW-EC 5019

TARGET CONTAMINATION

GOOD EVENTS SELECTION

Correlation between the longitudinal momentum and total charge

Correlation between the laboratory energy and charge

QUASI-COMPLETE EVENTS

THEORETICAL SIMULATIONS

Interacting Nuclei Structure & Reaction Dynamics

AMD code

- describes the cluster structure of the interacting particles.
- takes into account the particleparticle correlations.

{A. Ono, Phys. Rev. C59, 853 (1999)}

Effect of the Experimental filter (software) applied on GEMINI++ simulation of the 4 studied systems

GEMINI++ code

Simulate the decay of hot nuclei formed in fusion/quasi-fusion reaction.

- Standalone when a good selection of central events can be performed;
- Afterburner (after a dynamical code) to produce secondary particles distributions from primary fragments -> to be compared with exp data.

{R. J. Charity, Phys Rev C 82 (2010) 014610.}

⁴⁶*Ti*: A DEFORMED NUCLEUS

Fig. 2. Left: spectrum of the γ -rays from the decay of the GDR built in hot ${}^{46}\text{Ti}$ in coincidence with the discrete transitions in the residual nucleus ${}^{42}\text{Ca}$, together with the Cascade calculations assuming 3-Lorentzian GDR strength function with $E_{\text{GDR}} = 10.8$, 18 and 26 MeV. Upper right: experimentally obtained GDR absorption cross-section and the GDR strength function used in Cascade calculations. Bottom right: thermal shape fluctuation predictions based on potential energies from the LSD model calculations for $I = 22\hbar$ and $I = 30\hbar$.

Figure 2. Left: the yrast lines used in the calculations (solid lines) and the rigid body yrast lines with different deformation parameters (dotted lines). Right: the evolution of the equilibrium shape of ⁴⁶Ti as a function of spin predicted by the LSD model.

<u>CACARIZO code</u>: $E(J) = \frac{\hbar^2 J(J+1)}{\Im_{sphere}(1+\delta_1 L^2+\delta_2 L^4)}, \text{ with } \delta_1 \text{ and } \delta_2 \text{ deformation parameters}$

the equivalent in **GEMINI++ code**:

$$E_{Yrast}(J) = \begin{cases} E_{Sierk}(J) \text{ if } J < J^* \\ E_{Sierk}(J) + (J - J^*)E_{Sierk}(J^*) \text{ if } J > J^* \end{cases} \text{ with } J^* = 0.319A$$

β	δ_1	δ_2	Shape				
0.2		RLDM parameters					
0.6	$4.6 imes 10^{-4}$	$1.0 imes 10^{-7}$	Quasi – SUPERDEFORMED				
1.0	1.1×10^{-3}	1.0×10^{-7}	Quasi – HYPERDEFORMED				

IMW-EC 5078 M. CICERCHIA

THE STATISTICAL CODE: GEMINI++

a [MeV⁻¹]

10

Hauser-Feshbach Model

Weisskopf Evaporative Theory

Quantum Description of Angular Momentum

 $W_{\beta} \propto \iint \tilde{\ell} T_{\ell} \rho_B(E^*_B, J_B) d\varepsilon_b d\phi$ $\tilde{\ell} = 2\ell + 1$

<u>3 ingredients in the statistical model:</u>

- **Transmission coefficients** $T_{l}(\epsilon) = \frac{T_{l}^{R_{0}-\delta r}(\epsilon) + T_{l}^{R_{0}}(\epsilon) + T_{l}^{R_{0}+\delta r}(\epsilon)}{2}, \delta r = w\sqrt{T}$
 - Level density parameter $\rho_B(E_B^*) \propto 2\sqrt{aE_B^*}$ $\frac{1}{k_{\infty} - (k_{\infty} - k_{0})exp\left(-\frac{\kappa}{k_{\infty} - k_{0}}\frac{U}{A}\right)}$ $\kappa(A) = 0.000517 exp(0.0345A)$

Macroscopic rotational energy of the nucleus $E_{Yrast}(J) = \begin{cases} E_{Sierk}(J) & \text{if } J < J^* \\ E_{Sierk}(J) + (J - J^*)E_{Sierk}(J^*) & \text{if } J > J^{**} \end{bmatrix} = 0.319A$ 3.

ANALYSIS RESULTS: ANGULAR DISTRIBUTION

ANALYSIS RESULTS: PROTON & α -PARTICLE SPECTRA

ANALYSIS RESULTS: PROTON & α -PARTICLE MULTIPLICITY

ANALYSIS RESULTS: DEUTERON, TRITON AND ³HE

SUMMARY

Studying the decay of ⁴⁶Ti^{*}, the theoretical GEMINI++ simulations reasonably reproduce the major part of global variables for all the reactions; nevertheless, the slight differences observed are crucial for analyzing the interplay between the two different reaction mechanisms. In particular, the overproduction of alpha-particles of forward angles represents a signature of the onset of fast emission.

.. AND PERSPECTIVE

- Study on particle-particle correlations will be performed, selecting specific decay channels (1a, 2a, 3a ...) to get a better insight on the reaction interplay;
- The AMD calculations are in progress: AMD events are available for only one system. Further calculations are ongoing for all systems for a number of events necessary to compare with exclusive experimental data.

THANK YOU FOR YOUR ATTENTION!

NUCL-EN COLLABORATION

<u>M.Cicerchia^{1,2}</u>, F. Gramegna¹, D. Fabris³, T. Marchi¹, M. Cinausero¹, G. Mantovani^{1,2}, A. Caciolli^{2,3}, G. Collazzuol^{2,3}, D. Mengoni^{2,3}, M. Degerlier⁴, L. Morelli⁵, M. Bruno⁵, M. D'Agostino⁵, S. Barlini⁶, S. Piantelli⁶, M. Bini⁶, G. Pasquali⁶, P. Ottanelli⁶, G. Casini⁶, G. Pastore⁶, C. Frosin⁶, D. Gruyer⁷, A. Camaiani⁶, S.Valdré⁶, N. Gelli⁶, A. Olmi⁶, G.Poggi⁶, I. Lombardo⁸, D. Dell'Aquila^{8,9}, S. Leoni¹⁰, N. Cieplicka-Orynczak¹⁰⁻¹¹, B. Fornal¹¹

¹INFN Laboratori Nazionali di Legnaro, Legnaro (PD), Italy. ²Dipartimento di Fisica e Astronomia dell'Università di Padova, Padova, Italy. ³INFN Sezione di Padova, Padova, Italy.

⁴Science and Art Faculty, Physics Department, Nevsehir Haci Bektas Veli Univ., Nevsehir, Turkey.
⁵INFN Sezione di Bologna e Dipartimento di Fisica e Astronomia, Univ. di Bologna, Bologna, Italia.
⁶INFN Sezione di Firenze e Dipartimento di Fisica e Astronomia, Univ. di Firenze, Firenze, Italia.
⁷Grand Accélérateur National d'Ions Lourds, 14076 Caen, France,
⁸INFN Sezione di Napoli e Dipartimento di Fisica, Univ. Federico II Napoli, Napoli, Italia.
⁹Institut de Physique Nuclèaire (IPN) Université Paris-Sud 11, Orsay, Île-de-France, France.
¹⁰INFN Sezione di Milano e Dipartimento di Fisica, Univ. di Milano, Milano, Italia.