Current trends in the microscopic description of fission

Ultimate goal:

Provide a fully microscopic description of fission from compound nucleus to separated fragments

Outline:

- Challenges in the description of fission
- Generalities on time-dependent approaches with pairing
- Recent application to fission
- Beyond quantum Mean-Field Theories: *deterministic* vs *stochastic* theories
- Applications and perspectives

Coll: S. Ayik, B. Yilmaz, C. Simenel, D. Regnier, G. Scamps, Y. Tanimura

- Quantum effect is important (both for collective and intrinsic): quantum tunneling, ...
- The processus is not slow enough to be fully adiabatic in collective space (@scission).
- Superfluidity impact both quasi-static and dynamical effects (see later).
- Systems are big and the global time-scale can be very long (up to million of years)
- The number of DOFs might be very large.

From quasi-static to dynamical approach: the time-dependent GCM

Advantages

- Treat quantum effects in collective space: (quantum tunneling, interferences)
- As its counterpart in nuclear structure (static GCM)

Solve quantum motion in collective space

$$\begin{split} |\Psi(t)\rangle &= \int_{\mathbf{q}} g(\mathbf{q},t) |\xi(\mathbf{q})\rangle d\mathbf{q} \\ & \\ i\hbar \frac{\partial g(\mathbf{q},t)}{\partial t} = \hat{H}_{\text{coll}}(\mathbf{q})g(\mathbf{q},t). \end{split}$$

(Courtesy D. Regnier)

Works quite well for mass yields

From quasi-static to dynamical approach: the time-dependent GCM

Solve quantum motion in collective space

$$\begin{split} |\Psi(t)\rangle &= \int_{\mathbf{q}} g(\mathbf{q},t) |\xi(\mathbf{q})\rangle d\mathbf{q} \\ & & \\ i\hbar \frac{\partial g(\mathbf{q},t)}{\partial t} = \hat{H}_{\mathrm{coll}}(\mathbf{q})g(\mathbf{q},t). \end{split}$$

Ichikawa, Iwamoto, Möller, and Sierk, Phys. Rev. C 86 (2012)

Difficulties

Some of this difficulties can be solved using Time-dependent EDF

- Dimensionality: number of collective DOFs. Proper mass require doubling the dimension.
- Energy landscape has discontinuities.
- Full GCM is not well defined within the EDF approach

Lacroix et al, Phys. Rev. C79 (2009); Robledo J. Phys. G 37 (2010),...

Motion can be non-adiabatic: onset of dissipation, fluctuations, non-Markovian effects.

Nuclear reaction with superfluid nuclei on a mesh

DHF is a standard tool
$$\ket{\Phi_i}$$
 : Slater

$$i\hbar \frac{d\rho}{dt} = [h(\rho), \rho]$$
 Single-particle evolution

Simenel, Lacroix, Avez, arXiv:0806.2714v2

Introduction of pairing: TDHFB

$$i\hbar \frac{d}{dt}\mathcal{R} = [\mathcal{H}(\mathcal{R}), \mathcal{R}] \qquad \qquad \mathcal{R} = \begin{pmatrix} \rho & \kappa \\ -\kappa^* & 1-\rho \end{pmatrix}$$

Quasi-particle evolution

(Active Groups: France, US, Japan...)

- 1	

Full TDHFB (Skyrme-spherical symmetry) Full TDHFB (Skyrme-symmetry unrestricted) (Gogny-axial symmetry)

Avez, Simenel, Chomaz, PRC 78 (2008).

Stetcu, Bulgac, Magierski, and Roche, PRC 84 (2011) Y. Hashimoto, PRC 88 (2013).

Symmetry unrestricted TDBCS limit of TDHFB (also called Canonical basis TDHFB)

Neglect
$$\Delta_{ij} \longrightarrow |\Phi(t)\rangle = \prod_{k>0} \left(u_k(t) + v_k(t) a_k^{\dagger}(t) a_{\bar{k}}^{\dagger}(t) \right) |-\rangle.$$

Ebata, Nakatsukasa et al, PRC82 (2010) Scamps, Lacroix, PRC88 (2013).

Very good predictive power

TDHFB = 1000 * (TDHF)

Dynamical description of superfluid nuclei

Recent progress

Nuclear reaction with superfluid nuclei on a mesh

Description of fission in a time-dependent mean-field framework

With pairing

Scamps Simenel, Lacroix, PRC92 (2015) Tanimura, Lacroix, Scamps, PRC 92 (2015) Bulgac, Magierski, Roche, and Stetcu, PRL 116, 122504 (2016)

Choose an initial condition

Follow the system in time until something happen (fission)

Advantages

- -fully microscopic time-dependent
- -non-adiabatic theory
- -symmetry unrestricted

(however with no spontaneous symmetry breaking)

Drawback

-almost classical in collective space (fluctuations are underestimated, no quantum tunneling, interferences ...)

Fission time ?

Still debated

Bulgac, Magierski, Roche, and Stetcu Phys. Rev. Lett. 116, 122504 (2016)

Tanimura, DL, Scamps, PRC 92 (2015)

Microscopic dynamic

$$\frac{dq_{\alpha}}{dt} = -\frac{i}{2\hbar m} \operatorname{Tr}([Q_{\alpha}, p^{2}]\rho(t)) \equiv \frac{p_{\alpha}}{M_{\alpha}},$$
$$\hat{P}_{\alpha} \equiv -i\frac{M_{\alpha}}{2\hbar m} \sum_{ij} \langle i | [\hat{Q}_{\alpha}, \hat{p}^{2}] | j \rangle \hat{a}_{i}^{\dagger} \hat{a}_{j}.$$

$$\langle [\hat{Q}_{\alpha}, \hat{P}_{\alpha}] \rangle = i\hbar, \implies \frac{1}{M_{\alpha}(t)} = \frac{1}{m} \operatorname{Tr}[\rho(t) \nabla Q_{\alpha} \cdot \nabla Q_{\alpha}],$$

Macroscopic evolution: Dissipation, non-adiabatic effects...

- The system first follows the adiabatic limit
- Around scission, dynamic is faster and Becomes non-adiabatic

 $E_{\rm diss} \simeq 20 {\rm MeV} \quad {\rm TKE} \simeq 250 {\rm MeV}$

Dissipative regime in TDDFT

Fission of superfluid ²⁵⁸Fm

Identification of main fission paths

 $\Delta t=0.675 zs \qquad \Delta t=1.8 zs \qquad \Delta t=1.08 zs$

 $1 zs = 10^{-21} s$

98		C1237 21.8	CT238 21. MS	CT239 398	СТ240 1.06 м	С1241 3.78 м	С1242 34 м	СТ243 107 м	CT244 194 M	С1245 450 м	CI240 35.7 H	С1247 3.11 н	CT248 333.5D	CT245 351 Y	CT250 1308 Y	C123 878 Y
97	Bk235 -20 8	Bk236	Bk237 -1 м	Bk238 144 s	Bk239 -эм	Bk240 48m	Bk241 -эж	Bk242 70м	Bk243 4.5H	Bk244 4.35 H	Bk245 494 d	Bk246	Bk247	Bk248	ВК249 330 d	Bk2: 3217 H
96	Сm23 -2 м	4Cm23: -5x	Cm236 -юж	Cm237 -20 м	Сm238 24н	Сm239 -29н	Cm240 27 D	Cm241 2280	Cm242 16280	Cm243 29.1 Y	Cm244	Cm24 BSD Y	Cm24(4760 Y	Cm247	Cm248 эншо ү	Cm2 64.153
95	Ат23 -2 м	3 Am234 2.32 M	Am235	Am230 44 M	Am237 אםנ ז	Am238 яям	Am239 ուջո	Am240 508 н	Am241	Am242 1612 н	Am243 7370 ¥	Am244 101 н	Am245 2054	Am246 39 M	Am247 230 м	Am2 -юж
94	Ри232 эл м	Ри233 209 м	Pu234 ввн	Pu235 253м	Pu236 2859 Y	Pu237 452 d	Pu238	Pu239 24110 Y	Pu240 6564 Y	Pu241	Pu242 373300 y	Pu243 4955 н	Pu244	Pu245 10.5 н	Pu246 1084 d	Pu24 2 27 D
93	Np231 488 м	Np232 14.7 м	Np233 ¥2 м	Np234	Np235	Np236	Np237	Np238 2117 D	Np239 2.3565 D	Np240 ыям	Np241 139 м	Np242 ₂₂м	Np243 1.85 м	Np244 ₂₂9 м		
92	U230 20.8 d	U231 42 D	U232 สะระ	U233	U234	U235 1.7204	U236	U237 5.75 d	U238 4.4988 +9 Y	U239 23.45 m	U240 141 H	U241 -5m	U242 168 m			
91	Pa229	Pa230	Pa231	Pa232	P a 2 3 3 26 967 d	Ра234 6.11 н	Pa235 24.5 M	Ра236 91 м	Ра237 влж	Ра238 2.3 м	Pa239	Pa240 -2 ж				
90	Th228	Th229 7540 х	Th230 75550 Y	Th231 15.52 н	Th232	Th233 22.3 M	Th234 24.10 D	Th235	Th236 37.5 M	Th237 50м	Th238 -20 м		-			

http://www.nuclear.nsdc.cn/nuclear/chart17.asp

The preferential fission towards fragments

with Z=52-56 might stems from the octupole softness around Barium.

Recent systematic analysis: N/Z physics The Z=54 attractor

Fission of superfluid ²⁵⁸Fm: energetic properties

Mean-field only will never be able to describe fully fission

J. Randrup et al, NPA538 (92).

Our objective: use the *stochastic mean-field* approach to describe fission

Lacroix, Ayik, EPJA (Review) 50 (2014)

Quantum fluctuations can be treated approximately by sampling initial zeropoint motion followed by classical trajectories (here classical=mean-field)

Related approaches: -description of little big-bang at RHIC or LHC

For Bose-Einstein condensates

Sinatra, Lobo, and Castin, J. Phys. B 35 (2002)

Mean-Field theory

Stochastic Mean-Field

$$\begin{split} \frac{d\langle A_{\alpha} \rangle}{dt} &= \mathcal{F}\left(\{\langle A_{\beta} \rangle\}\right) \ \text{ at all time } \ \sigma_Q^2 = \langle A^2 \rangle - \langle A \rangle^2 \\ \frac{dA_{\alpha}^{(n)}}{dt} &= \mathcal{F}\left(\{A_{\beta}^{(n)}\}\right) \end{split}$$

at all time

Constraint:

$$\Sigma_C^2 = A^{(n)} A^{(n)} - A^{(n)^2}$$
$$\Sigma_C^2(t=0) = \sigma_Q^2(t=0)$$

A(n) A(n)

SMF in density matrix space: simple initial state

$$\rho(\mathbf{r}, \mathbf{r}', t_0) = \sum_{i} \Phi_i^*(\mathbf{r}, t_0) n_i \Phi_j(\mathbf{r}', t_0)$$

$$\rho^{\lambda}(\mathbf{r}, \mathbf{r}', t_0) = \sum_{ij} \Phi_i^*(\mathbf{r}, t_0) \rho_{ij}^{\lambda} \Phi_j(\mathbf{r}', t_0)$$

$$\overline{\rho_{ij}^{\lambda}} = \delta_{ij} n_i$$

$$\overline{\delta \rho_{ij}^{\lambda} \delta \rho_{j'i'}^{\lambda}} = \frac{1}{2} \delta_{jj'} \delta_{ii'} \left[n_i (1 - n_j) + n_j (1 - n_i) \right].$$
S. Ayik, PLB 658 (2008)

It gives a natural link with the theory of open quantum systems (quantum Langevin approach, non-Markovian, ...)

$$m\frac{dv(t)}{dt} = F - \gamma v(t) + \eta(t)$$

The noise comes from the complexity of the bath that is treated through random initial conditions

Stochastic mean-field: success and predictive power

Illustration with the Lipkin model

time

Progress

Extension to superfluid systems: TDHFB with fluctuations

Lacroix, Gambacurta, Ayik, Yilmaz, PRC C 87, 061302(R) (2013)

Mapping initial fluctuations with complex initial correlations

Yilmaz, Lacroix, Curecal, PRC C 90, 054617 (2014).

Application to optical lattice: better than non-equilibrium 2-body green functions

Lacroix, Hermanns, Hinz, Bonitz, PRB90 (2014)

Equivalent to simplified *un-truncated* BBGKY hierarchy

Lacroix, Tanimura, Ayik, EPJA52 (2016)

DL, Ayik, Yilmaz, PRC (2012) DL, Ayik, EPJA [Review] (2016)

TD-EDF for fission

Basic aspects of stochastic mean-field

SMF in density matrix space

$$\rho_{ij}^{\lambda} = \delta_{ij} n_i$$

$$\overline{\delta \rho_{ij}^{\lambda} \delta \rho_{j'i'}^{\lambda}} = \frac{1}{2} \delta_{jj'} \delta_{ii'} \left[n_i (1 - n_j) + n_j (1 - n_i) \right].$$

Range of fluctuation fixed by energy conservation

How to conceal microscopic deterministic approach and randomness ?

Npmerical (affort: -Generates a sample of microsc $\mathfrak{O}p \coloneqq |\Phi\rangle \langle \Phi|$ trajectories (typically 300 to 1000) -Each trajectory is 8-10 days CPU time

 $D = |\Phi \rangle \langle \Phi |_{\theta, \theta \theta fn/c}$ ^{0,16}) 20 $(t) = |\Phi_a\rangle \langle \Phi_b |$ 15 0,14 10 0.12 5 0.1 Ø 0.08 -5 0,06 -10 0.04 -15 0,02 -20 Й -20-15 -19 10 15 20

Phase-space average method: experiment versus theory

P(t_{scission}) (%)

Additional remarks

Quantum fluctuation versus dynamical pairing

How to conceal microscopic deterministic approach and randomness ?

Internal deformation of fission fragments

Summary

Opportunities

Nuclear Fission from the early stage

Sadhukhan, Nazarewicz, Schunck, PRC 93, (2016)

Regnier, Schunck, DL (2018)