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Outline

® FRAMEWORK: Perturbative QFT in Euclidean space
— Massless ¢; theory

— SU(2) (pure) gauge theory

® GOAL: prove renormalizability and other properties of
renormalized correlators in momentum space at all loops

convergence of limits and integrals
=> bounds on correlators

® DIFFICULTIES: IR divergences (massless particles),
explicit BRST/STI breaking from momentum cutoffs

® TOOLS: Renormalization group flow equations and
mathematical induction. No Feynman diagrams around.



IR divergences in Euclidean, massless QFT

e A collection of momenta (p1,--- ,pn) is said to be exceptional if there
exists a vanishing subsum
r O
Zpe =0 forsome (0 #EC({1,..n}
eclk
3 J

e Correlators (¢(po)d(p1) - - - ¢(py_1)) with mass dimension d < 0 typically
diverge if (p1,--- ,pn—1) is exceptional.
(po = =Y., Pe excluded due to momentum conservation)

e Such IR divergences are "physical” and generally present in all Euclidean
QFT with massless particles. (Situation even worse in Minkowski.)

e Mathematically: In QFT, correlators are distributions, not necessarily
globally—defined functions.

e IR singularities regularized by IR cutoff A > 0



IR + UV regularized propagator (massless ¢} case)
e Ay is an UV cutoff, A is an IR cutoff: 0 < A < Ag;
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o limp, oo limy_ o+ p?C'™20)(p) = 1: recover usual propagator.
e In YM o4 2, (p?) := exp(—p*/A5) — exp(—p*/A?)

(because C10 is more IR singular)



Effective action L (massless ©j case)
6—%LA’A0 N/ d¢ ¢ (RCH10)~1 ¢ 6—%LAO(¢‘|‘SO)

du(p): Gaussian measure
with covariance hC*%o
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UV action
8§Z(No), dm?(Ag), 6g(Ao) = O(h) counterterms
fixed order-by-order by renormalization conditions

o [M"0(yp) is the generator of the Connected Amputated Schwinger (CAS)
functions £§,’LA° — sum of Connected & C**o-Amputated graphs o h*.
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o (When it exists) limp, o0 limp o+ Ly gives the renormalized CAS




[Wilson]

Flow equation for L (] massless) (Wegner+Hougron]

[Polchinskil]
Notation: X :=0x X, (f,g) := f f(x)g(x), P = P1,---,0n)

LAo,AO — LAO

LA+M
e The RG flow equation rules the evolu- LA,AO/. :

tion of the effective action L*"0 in terms
of A, from A=Agto A—0

A AtdA Ag

LA’AO :E<i CAA (5 >LAA _1<5LAvAO C’A,A05LA’AO>
oo’ 0 2\ dp 0
e Mixed UV+IR boundary conditions qi3],q ren. points, |qs|, |q| = O(M)

UV: A= Ag: L% = LAO(UVactlon)i,CAOAO—O VN >4, L
IR: A—0: EOAO(q 1) = gr; 82/LOAO( ) = z1; OAO(O)—O



[Wilson]

Flow equation for CAS [Vegner+Hougton]
AR AA [Polchinski]
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Infinite hiera_rchy of ec_]uatic.)ns WhI'C.h 1) ¥ :=|F|+1<N+1landL' <L
can be org.anlzed recursively i.e. LHS is 2) H =N +2L/ <N+ 1+ 2L —H4+1
expressed in terms of known RHS 3) B = H+ 1 forbidden by E AO .
iterate over H:=N+21=2,4.,6,-- 4) " =H forbidden by L AO =
iterate over L=0, 1,...,(H-2)/2 .. soH <H

(H,L)gus < (H,L)rns



Inductive proofs: reconstruction

WARNING:
iterate over H=N+2L=2,4,6,. - - integrals must converge
iterate over L=0,1, ..., (H— 2)/2 TN = bounds are needed!
|w|l = wmaz 1
w multi-index counting momentum derivatives
. : N
~irrelevant terms (i.e. d < 0)
Oy Ly (b)) = 0+ | "4 8 £330 (o)
0
UV-BC flow
0 4
decrease ||w||
(i.e. increase d =4 — N — ||w]|)
yo : - — 0 N
" relevant terms (i.e. d > 0) qi3) ren. point, |qpz)| = O(M)
o ALA
L) —gL+/dAc4L () + [ e pe L4720(Q(1)),
flow
- IR-BC = ren. cond. - - |
< interpolation from g3 to pi 4




All order uniform bounds for massless ¥

[RG+Kopper, arXiv:1103.5692 (sketch)]
[RG+ Kopper: Full paper still pending]l (Shame on the speaker!)

e VN, VL we prove accurate bounds for Lﬁ”fo (p1,-..,pn_1) that
1) hold uniformly for all p, A, Ag
2) encode IR divergences at exceptional momenta

3) exibit a physical power-like falloff (up to logarithms) for large non-
exceptional momenta.

e Bounds for 9305 Ly (p1,...,pu—1) are also established (h, k € {0,1})

e Renormalizability: the existence of pointwise UV+IR [imit for non-—
exceptional momenta follows from the bounds.
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Bounds: baby version
A 5 P2 Ps
][, (P15))] < 1+ p2 + p3la
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PL (log , log —) |
" k(A Py, M) Y ;
- 1
deg PL =L large eg when A = 0
and p(5] exceptional
o log_ (z) := log(max (1, )) arge vhen
e M renormalization scale A=Ao > M
P3

® Pin] = (p17'°' 7pn); "
o [ppnya = max(A, /3 p2) We/ghted trees !l

IR regulated Euclidean norm
® K= min(]pq;]/\, pi +DpilA, -, P+ psa, |M!A) dynamical IR cutoff



Bounds: teenager version

ety ()l < (XTI ali®2) Prllogs)

TETnw i€Z(T)

w E NZL(N_D Is a multi—index

Ty is a set of weighted trees

Z(T) is the set of internal lines
of the weighted tree T’

k; is the momentum flowing through the
internal line 1.

0(i) = p(i) + ... is the total weight associated to i
sum rule ) . 0(i) =N+ ||lw|| —4 = —d



Renormalization of SU(2) pure gauge theory

[Efremov+RG+Kopper, arXiv:1704.06799 ] [Efremov, PhD Thesis 2017]
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e Explicit renormalization conditions at “physical points”
A =07, p non-exceptional.

e Uniform & all-order bounds in momentum space for OPI functions (and
their Ag-derivatives) with an arbitrary number of insertions of the composite
operators M0, QAo generating the renormalized BRST transformation

e Renormalizability: pointwise |IR+UV convergence of such OPI functions
at non-exceptional momenta

e Slavnov—-Taylor identities (STI) for the OPI functions [zinn-Justin,1975],
[Kluberg-Stern+Zuber, 19751 are explicitly broken by cutoffs.

e We prove uniform bounds on the "ST/ violations” from which follows that they
vanish at non-exceptional momenta in the IR+UV limit:

o Atlpl+m
< A

violations™*° ()

X trees x P (logs) x Q8(|M||]jl_ A> x (1+%)4

with degrees r, s linear in L



SU(2) YM: tree level Lagrangian, no cutoffs

e [orentz gauge fixing with auxiliary field B and Faddeev-Popov ghosts c, ¢

e The Total, 0O-loop Lagrangian density in the limit A — 0, Ag = o0 is

1 §
0,00 __ : _

0 .. . .
° to’to?) is invariant under BRST transformation

1
0P = esd sA = De, SC= 59{67 6}7 € is a Grassmann parameter

d . a b
, {c, c}? = ieqpqc®c
s¢ =1B, sB =0, ’

e the s operator is nilpotent: s> = (



Dependence on B field is trivial

e CHOICE: Vanishing renormalization conditions for all relevant (i.e. d > 0)
terms involving B

o rng;B$((j> =0,

o LEMMA: for all A >0
B ) = 0

e COROLLARY: no counterterms involving B

e COROLLARY: trivial (tree-level) dependence on B:

(A B, ¢ ¢) £/al4 (B —i0A)? + T4 ¢ €)



SU(2) YM: all-order Lagrangian + cutoffs

o All-order, total, regularized Lagrangian, with ® := (A, B, ¢, ¢):

1
ghho — SO Cix, O+ Lhnto + L'

2
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e We include all possible counterterms compatible with the global sym-
metries: 11 marginal (i.e. d = 0) counterterms and 2 strictly relevant

(i.,e. d > 0) counterterms . NB: No counterterms with B in our case.

e In presence of cutoffs 0 < A < Ay < oo the BRST invariance of the total

Lagrangian is explicitly broken already at tree level



violated STI for Z

e renormalized BRST 6.®:

0. A = eavoszO, dc.C = —EOOAOQAO, 0.C = €0pp,t B 0.B =0
1
o = lexo Jc — z’gRé\“ A, c], QMo — 5 gRAO {c,c}

e The 3 functions R*° = 1 4+ O(h) encode operators’ counterterms

e Define Z% (K, ) functional of the sources K := (4,b,1,1), x := (7, w):

1

ZY0 (K, x) = / [d®] exp(—% / (éft%’?o + "0 4 wQt0 — K <I>))

2

No contact terms ~*,w?, w~y by global symmetries

e The change of variable &' = & + §.® gives the violated STI:

0,Aq
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violated STI for

1 1
OA - OA OA
L (Fp(a?) + (1B + —5814) r5(£)> = —2SI_‘ 0

e p and 3 are sources for the 2 operators encoding the STI violations
e Gammology: three Gamma’s differing by quadratic terms
1 ~
standard I’ = TA%0(A, B, ¢,¢) = . / d*x (6B —i0A)%2 +TA%0(A4, ¢, e)
1

reduced I' (flow equation) = /%o — [Ado _ 5(A, JXJ{O C A — (G 0/&0 o°c)
auxiliary T (defines S) = T .= T 4 (B, o) + %(A, 00 A)
e with % = % — 85i we define:
' o 0 oL 0
ol 0
S = — 9 = 9 S
:E:: < (§¢) OXL&0(§¢V(> T < 595* OIM\O(S¢)>

(¢,0*)e{(A7),(—c,w),(¢,0)}

e Restricted nilpotency of § implies a vital consistency condition:

[Becchi, arXiv:hep-th/9607188]



Free and constrained renormalization constants

o 8wF%AO;¢(O) =0, »; € {v,w}, for all strictly relevant terms

e 11 4+ 3 = 14 marginal counterterms < 14 marginal renormalization constants

° rMAo;cécé(O) — O, rMAo;CEA2 (O) _ O, 8AFMA0;CEA(O) — 0«4 RC

_ _ A2 _ A2 _ .
LEMMA: the 4 counterterms 7““c“, rfCA , T§CA , ré“cc vanish

. . . 3 _
e The 3 renormalization constants corresponding to CTs 7, X4 | 22°¢ are free

e The 7 remaining renormalization constants must satisfy 7 additional

relations in order to make the marginal violation terms fx ng”" and Fg;w

at the renormalization point comply with the bounds (i.e. be small in
UV limit)

e We prove the existence of a solution for this system of relations that does
not depend on the UV cutoff.

o Agreement with [Bonini+D’Attanasio+Marchesini, arXiv:hep-th/9602156 ]



(selected) results using the FE framework

e All-order bounds for correlation functions of gauge-invariant operators in Yang-
Mills theory [Fréb+Holland+Holland, arXiv:1511.09425] (P conserved = triviality of
BRST cohomology)

e i massive: explicit bounds on the constants in the polynomials and proof of
local existence of Borel transform [Kopper 2010, CMP295]

e OPE convergence at fixed L: for ¢j massive [Hollands+Kopper, arXiv:1105.3375]
n > 2 [Holland+Hollands, arXiv:1205.4904], QOZL massless [Holland+Hollands+Kopper,

arXiv:1411.1785]

eOPE: formulas for derivatives wrt coupling of Wilson coefficients;
[Holland+Hollands, arXiv:1401.3144]

e OPE: extension to YM [Frob+Hollands, arXiv:1603.08012]

e Renormalization Proof for Massive ¢7 Theory on Riemannian Manifolds
[Kopper+Miiller, arXiv:math-ph/0609089]

e Renormalization of Finite Temperature massive ¢j
[Kopper+Miiller, arXiv:hep-th/0003254]

e Minkowski space: renormalization, analiticity of £2(p*) near mass shell and con-
tinuity of L4 (p[g]) on R [Keller+Kopper+Schophaus, arXiv:hep-th/9605137], [Kopper,

arXiv:math-ph/0701071]



Memeories....



The beginning...
* 1989, Genoa University, Italy: I knocked at Ken's office door
asking for a graduation (Laurea) subject ...

* (As usual) Ken was immediately hospitable and gave me a problem

... In spite of the fact that I did not follow his QM course
(two QM courses alternated yearly at that time)

* Ken gave me also a drop of his wisdom (?Japanese) :

'T can lead a horse to water but I can't make it drink’
... upsetting but motivating!

* This was the beginning of a long and fruitful scientific
collaboration, that continued with my PhD and after, till

beginning 1996 when I started my post-doc in Saclay
* Long days of hard work ...

... and short weeks because at that time Ken arrived at Genoa U on
Tuesday and quit for Pisa on Thursday!



...a close friendship started as well!

* It has been (and it is) a pleasure to interact with Ken!

* Everybody meeting Ken is enriched by his human qualities:

... long list omitted ...

* Ken acted with me more as a second father than as a PhD director!

... S0, Sincerely:

Thanks Lor all, KEN

—p



Happy birthday
KONISHI-SAN !!!
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