Anomalous dimensions without Feynman diagrams

F. Gliozzi

Physics Department, Torino University

July, 20 2017

The Renormalization Group approach to Wilson Fisher fixed points

- * Two small parameters: the coupling constant g which turns on the interaction in the Lagrangian and $\epsilon = d_u d$
- * $d_u :=$ upper critical dimension, where the perturbation is marginal
- At d < d_u the perturbation becomes slightly relevant at the Gaussian UV fixed point and the system flows to the infrared WF fixed point
- * The anomalous dimensions of local operators are expressed in terms of a (scheme-dependent) loop expansion
- * The vanishing of the Callan-Zymanzik $\beta(g)$ fixes the relation between g and ϵ and gives scheme-independent ϵ -expansions

The CFT approach to Wilson Fisher fixed points

- No Lagrangians
- * One small parameter: $\epsilon = d_u d$
- * d_u := upper critical dimension, where the free field theory has a scalar primary with scaling dimension $\Delta = \frac{d+2}{2}$
- * In $d = d_u \epsilon$, and only there, there is a smooth conformal deformation of the free theory that can be identified with the WF fixed point
- \Rightarrow This smoothness fixes uniquely, to the first non-trivial order in the ϵ -expansion, the anomalous dimensions and the OPE coefficients of infinite classes of scalar local operators

* A CFT in d dimensions is defined by a set of local operators $\{\mathcal{O}_k(x)\}\ x \in \mathcal{R}^d$ and their correlation functions

$$\langle \mathcal{O}_1(x_1) \dots \mathcal{O}_n(x_n) \rangle$$

* Local operators can be multiplied. Operator Product Expansion:

$$\mathcal{O}_1(x)\mathcal{O}_2(y) = \sum_k c_{12k}(x-y)\mathcal{O}_k(\frac{x+y}{2})$$

* $\mathcal{O}_{\Delta,\ell,f}(x)$ are labelled by a scaling dimension Δ

$$\mathcal{O}_{\Delta,\ell,f}(\lambda x) = \lambda^{-\Delta} \mathcal{O}_{\Delta,\ell,f}(x)$$

an SO(d) representation ℓ (spin), and possibly a flavor index f

- * among the local operators there are the identity and a (unique) energy -momentum tensor $T_{\mu\nu}(x)=\mathcal{O}_{d,2}(x)$
- a CFT has no much to do with Lagrangians, coupling constants and equations of motion, even if one often uses these terms for simplicity

- * Acting with the Lie algebra of SO(d+1,1) on a local operator generates a whole representation of the conformal group. The local operator of minimal Δ is said a primary, the others are descendants
- * Not all the primaries define irreducible representations:
- * There are primaries admitting an invariant subspace: there is a descendant which is also primary. It corresponds to a null state
- \Rightarrow Denoting with $[\Delta,\ell]$ a null state and with $[\Delta',\ell']$ its parent primary, in view of the fact that they belong to the same representation, they must share the eigenvalues c_2,c_4,\ldots of all the Casimir operators C_2,C_4,\ldots

$$c_2(\Delta,\ell)=c_2(\Delta',\ell')$$
 ; $c_4(\Delta,\ell)=c_4(\Delta',\ell')$; . . .

* since $[\Delta, \ell]$ and $[\Delta', \ell']$ belong to the same rep. $\Rightarrow \Delta = \Delta' + n$ and the first two eq.s fix uniquely the possible pairs

* Eigenvalues of the Casimir operators

$$c_2(\Delta,\ell) = \frac{1}{2}\Delta(\Delta-d) + \ell(\ell+d-2)$$

$$\begin{array}{l} c_4(\Delta,\ell) = \Delta^2(\Delta-d)^2 + \frac{1}{2}d(d-1)\Delta(\Delta-d) + \ell^2(\ell+d-2)^2 \\ + \frac{1}{2}(d-1)(d-4)\ell(\ell+d-2) \end{array}$$

There are three families of null states:

Parent primary	Descendant primary		
Δ_k'	Δ_k	ℓ	
$1-\ell'-k$	$1-\ell+k$	$\ell' + k$	$k = 1, 2, \dots$
$\frac{d}{2}-k$	$\frac{d}{2}+k$	ℓ'	$k = 1, 2, \dots$
$d+\bar{\ell}'-k-1$	$d+\overline{\ell}+k-1$	$\ell' - k$	$k=1,2,\ldots,\ell$

The canonical scalar field ϕ_f of scaling dimension $\Delta_{\phi_f} = \frac{d}{2} - 1$ could have a primary descendant of dimension $\Delta = \frac{d}{2} + 1$

CFT, useful formulae

* The four-point function of local scalar operators $\mathcal{O}_i(x)$ in a d-dimensional CFT can parametrised as

$$\langle \mathcal{O}_{1}(x_{1})\mathcal{O}_{2}(x_{2})\mathcal{O}_{3}(x_{3})\mathcal{O}_{4}(x_{4})\rangle = \frac{g(u,v)}{|x_{12}|^{\Delta_{12}^{+}}|x_{34}|^{\Delta_{34}^{+}}} \left(\frac{|x_{24}|}{|x_{14}|}\right)^{\Delta_{12}^{-}} \left(\frac{|x_{14}|}{|x_{13}|}\right)^{\Delta_{34}^{-}}$$

 $\Delta_{ij}^{\pm}=\Delta_i\pm\Delta_j$ and Δ_i scaling dimension of \mathcal{O}_i , g(u,v) is a function of the cross-ratios $u=rac{\chi_{12}^2\chi_{34}^2}{\chi_{13}^2\chi_{24}^2}$ and $v=rac{\chi_{14}^2\chi_{23}^2}{\chi_{13}^2\chi_{24}^2}$

* g(u, v) can be expanded in terms of *conformal blocks* $G^{a,b}_{\Delta,\ell}(u, v)$ (eigenfunctions of the Casimir operators C_2, C_4, \ldots of SO(d+1,1)):

$$g(u,v) = \sum_{\Delta,\ell} \mathsf{p}_{\Delta,\ell} G_{\Delta,\ell}^{a,b}(u,v).$$

$$a = -rac{\Delta_{12}^{-}}{2}; \ b = rac{\Delta_{34}^{-}}{2}$$

WF fixed points

A CFT in $d - \epsilon$, defined by a set of local operators \mathcal{O}_i , is a *smooth deformation* of the free field theory in d dimensions if

$$\bullet \ \exists \ \mathcal{O}_i \leftrightarrow \mathcal{O}_i^f \ : \Delta_{\mathcal{O}_i} = \Delta_{\mathcal{O}_i^f} + \gamma_i^{(1)} \epsilon + \gamma_i^{(2)} \epsilon^2 + \dots$$

$$\mathbf{Q} \ \mathcal{O}_{i}^{f} \times \mathcal{O}_{j}^{f} = \sum_{k} \lambda_{ijk}^{f} \mathcal{O}_{k}^{f}, \ \mathcal{O}_{i} \times \mathcal{O}_{j} = \sum_{k} (\lambda_{ijk}^{f} + O(\epsilon)) \mathcal{O}_{k}$$

- * This definition does not imply that primary operators of free theory are also primary in the deformed CFT.
- * For general space dimensions d the deformations $\Delta_{\mathcal{O}} \to \Delta_{\mathcal{O}_f} + O(\epsilon)$ do not define a one-to-one correspondence with the spectrum of the free theory hence they are not smooth deformations
- * Consistent smooth deformations exist only at special values of d (upper critical dimension), reduce the number of primaries for $\epsilon \neq 0$ and define WF fixed points
- * They are encoded in the analytic properties of conformal blocks $G^{a,b}_{\Lambda,\ell}$ as functions of Δ

Poles and null states

- * The conformal blocks can be written as a sum of poles (+ an entire function in the whole Δ complex plane)
- * Poles only occur at the special $[\Delta'_k, \ell']$ primaries admitting a primary descendant, i.e. a null state.
- The residue of the pole is proportional to a conformal block:

$$G^{a,b}_{\Delta',\ell'} \sim r(\Delta'_k) rac{G^{a,b}_{\Delta_k,\ell}}{\Delta' - \Delta'_k}$$

* The complete list of the null states for general *d* coincides with the three families listed in the previous table.

The scalar null state at
$$\Delta_1 = \frac{d}{2} + 1 = \Delta_{\phi_f} + 2$$

 $G_{\Delta'}^{a,b} = r(\Delta_{\phi_f}) \frac{G_{(\Delta_{\phi_f}+2)}^{a,b}}{\Delta' - \Delta_{\phi_f}} + \text{rest}, \quad r(\Delta_{\phi_f}) = \frac{(\Delta_{\phi_f}^2 - \Delta_{12}^2)(\Delta_{\phi_f}^2 - \Delta_{34}^2)}{4d(d-2)}$

In a free field theory this primary descendant has always a vanishing residue in all the possible OPEs that generate ϕ_f :

$$[\phi_f^p] \times [\phi_f^{p\pm 1}] = \sqrt{p \pm 1} [\phi_f] + \dots$$

$$\Rightarrow \Delta_{12}^- = \pm \Delta_{\phi_f} \Rightarrow r(\Delta_{\phi_f}) = 0$$

$$([\phi_f]^p = \phi_f^p / \sqrt{p!})$$

Turning on the interaction in $d - \epsilon$, i.e. putting $\phi_f^n \to \phi^n$ with

$$\Delta_{\phi^n} = \Delta_{\phi^n_f} + \gamma^{(1)}_n \epsilon + \gamma^{(2)}_n \epsilon^2 + \cdots \Rightarrow r(\Delta') \neq 0 \Rightarrow$$

$$G_{\Delta_{\phi}}^{a,b} = rac{(d-2)(\gamma_{p}^{(1)} - \gamma_{p\pm 1}^{(1)})^{2}\epsilon^{2}}{4d(\gamma_{\phi}^{(1)}\epsilon + \gamma_{\phi}^{(2)}\epsilon^{2} + ...)}G_{\Delta_{\phi_{f}+2}}^{a_{f},b_{f}} + ...$$

For general d this is not a smooth deformation since the the free theory does not have a local operator of dimension Δ_{ϕ_f+2} unless there is a primary ϕ_f^n with that dimension, j.e.

$$n\Delta_{\phi_f} = \Delta_{\phi_f} + 2$$
, $\Rightarrow d = 2\frac{n+1}{n-1}$: only 3 solutions with integer d

$$(d=3, n=5), (d=4, n=3), (d=6, n=2), (d=6, n=2)$$

* Matching the coefficient of $G^{a_f,b_f}_{\Delta_{\phi_f+2}}$ with that of $G^{a_f,b_f}_{\Delta_{\phi_f^n}}$ we obtain constraints among anomalous dimensions $\gamma_n^{(i)}=\gamma_{\phi^n}^{(i)}$

$$d = 4 :$$

$$[\phi_f] \times [\phi_f^2] = \sqrt{2}[\phi_f] + \sqrt{3}[\phi_f^3] + \text{spinning operators}$$

$$\langle \phi_f \phi_f^2 \phi_f \phi_f^2 \rangle \Rightarrow g_f(u, v) = 2G_{\Delta_{\phi_f}}^{a_f, b_f} + 3G_{\Delta_{\phi_f}^3}^{a_f, b_f} + \text{spinning conf. blocks}$$

$$\langle \phi \phi^2 \phi \phi^2 \rangle \Rightarrow g(u, v) = (2 + O(\epsilon))G_{\Delta_{\phi}}^{a, b} + \dots$$

$$\lim_{\epsilon \to 0} g(u, v) = 2 \left(G_{\Delta_{\phi_f}}^{a_f, b_f} + \frac{\epsilon (\gamma_{\phi^2}^{(1)})^2}{8(\gamma_{\phi}^{(1)} + \epsilon \gamma_{\phi}^{(2)})} G_{\Delta_{\phi_f + 2} = \Delta_{\phi_f^3}}^{a_f, b_f} \right) + \text{spinning conf. b.}$$

$$\gamma_{\phi}^{(1)} = 0 \; , \qquad \frac{(\gamma_{\phi^2}^{(1)})^2}{\gamma_{\phi}^{(2)}} = 12.$$

In the general case from the fusion rule

$$[\phi^p] \times [\phi^{p+1}] = \sqrt{p+1} \left([\phi] + \sqrt{\frac{3}{2}} p [\phi^3] + \sqrt{\frac{5}{6}} p (p-1) [\phi^5] \right) + \dots$$

we get in the d = 4 case the recursion relation

$$\frac{(\gamma_{p+1}^{(1)} - \gamma_p^{(1)})^2}{\gamma_\phi^{(2)}} = 12 p^2$$

$$\gamma_0^{(1)} = \gamma_1^{(1)} = 0 \quad \Rightarrow \quad$$

$$\gamma_{\phi^{\,p}}^{(1)} \equiv \gamma_p^{(1)} = rac{\kappa_4}{2} \, p(p-1), \;\; \kappa_4 = \pm \sqrt{12 \gamma_\phi^{(2)}}$$

and similarly in d=3

$$\gamma_{\phi^p}^{(1)} \equiv \gamma_p^{(1)} = \frac{\kappa_3}{3} p(p-1)(p-2), \ \ \kappa_3 = \pm \sqrt{10\gamma_{\phi}^{(2)}}$$

In d=4 there is another way to calculate $\gamma_{k3}^{(1)}=3\kappa_4$

- * The scaling dimensions of the null states are universal and depend only on d
- * in $d = 4 \epsilon$ the primary descendant of ϕ_f has scaling dimensions $\Delta_{\phi_{\epsilon}} + 2 = 3 - \epsilon/2$ which should coincide with the scaling dimensions of ϕ^3
- * the smooth deformation requires

$$\Delta_{\phi^3} = 3\Delta_{\phi_f} + \gamma_{\phi^3}^{(1)}\epsilon = 3 + (\gamma_{\phi^3}^{(1)} - \frac{3}{2})\epsilon + O(\epsilon^2)$$

$$\Rightarrow \gamma_{\phi^3}^{(1)} = 1$$
, then $\kappa_4 = \frac{1}{3}$, $\gamma_{\phi}^{(2)} = \frac{1}{108}$

Similarly in $d=3 \Rightarrow \gamma_{\phi^5}^{(1)}=20\kappa_3$, matching with the primary descendant of ϕ yields $\gamma_{\phi^5}^{(1)} = 2$, thus

$$\kappa_3 = \frac{1}{10}, \quad \gamma_\phi^{(2)} = \frac{1}{1000}$$

* All these results in d = 4 and d = 3 coincide with those obtained with Feynman diagrams in quantum field theory

OPE coefficients in d = 4

Other results can be obtained by considering deformations of OPE free theories in which a ϕ_f^3 contribution on the RHS appears

$$[\phi_f^2] \times [\phi_f^5] = \sqrt{10} [\phi_f^3] + 5\sqrt{2} [\phi_f^5] + \sqrt{21} [\phi_f^7] + \text{spinning op.}$$

or

$$[\phi_f] \times [\phi_f^4] = 2[\phi_f^3] + \sqrt{5}[\phi_f^5] + \text{spinning op.}$$

the ϕ_f^3 contribution should be replaced by the conformal block of ϕ in the deformed theory.

$$\begin{split} \lambda_{\phi^2 \phi^5 \phi}^2 &= 5 \gamma_{\phi}^{(2)} \epsilon^2 + O(\epsilon^3) = \frac{5}{108} \epsilon^2 + O(\epsilon^3); \\ \lambda_{\phi \phi^4 \phi}^2 &= 2 \gamma_{\phi}^{(2)} \epsilon^2 + O(\epsilon^3) = \frac{1}{54} \epsilon^2 + O(\epsilon^3) \end{split}$$

Generalizations

- * For any generalized free field of dimension $\Delta_{\phi} = \frac{d}{2} k$ and any integer m one can define an upper critical dimension $d_u = 2k \ m/(m-1)$ (in general a fractional number) in which
- $\Rightarrow \phi^{2m}$ is a marginal perturbation
- \Rightarrow in $d_u \epsilon$ there is a (generalized) WF critical point characterized by the following spectrum of anomalous dimensions

$$\gamma_{p}^{(1)} = \frac{m-1}{(m)_{m}} (p-m+1)_{m}, \quad (p>1)$$

$$\gamma_{\phi}^{(2)} = (-1)^{k+1} 2 \frac{m \left(\frac{k}{m-1}\right)_{k}}{k \left(\frac{mk}{m-1}\right)_{k}} (m-1)^{2} \left[\frac{(m!)^{2}}{(2m)!}\right]^{3}$$
(1)

O(N)- invariant models

- * generalized free theories with scalar fields ϕ_i , i = 1, 2, ..., N transforming as vectors under O(N)
- * $\gamma_{p,s}^{(i)} \equiv$ anomalous dimensions of symmetric traceless rank-s tensors $\phi^{2p} \phi_{i_1} \phi_{i_2} \dots \phi_{i_s}$ traces

$$\Rightarrow$$
 for $d_u = 4k \; \gamma_{\rho,s}^{(1)} = rac{s(s-1) + p(N+6(\rho+s)-4)}{N+8} \; , \; \gamma_{\phi}^{(2)} = rac{(-1)^{k+1}(k)_k(N+2)}{2k(2k)_k(N+8)^2}$

 \Rightarrow for $d_u = 3k$

$$\gamma_{p,s}^{(1)} = \frac{(2p+s-2)(s(s-1)+p(3N+10(p+s)-8))}{3(3N+22)}$$

$$\gamma_{\phi}^{(2)} = \frac{(-1)^{k+1} (k/2)_k (N+2)(N+4)}{8k(3k/2)_k (3N+22)^2}$$

Conclusions

- It is possible to define smooth deformations and Wilson Fisher fixed points in $d-\epsilon$ only using CFT notions, with no reference to Lagrangians, coupling constants or equations of motion
- O(N) symmetric models and generalized free fields allow to define a more general class of WF fixed points
- $oldsymbol{\circ}$ Simple constraints on anomalous dimensions and OPE coefficients up to $O(\epsilon^2)$ are easily obtained. Higher order calculations require more constraints from conformal bootstrap equations.

祝 古希 誕生日おめでとう

小西憲一先生