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The Renormalization Group approach to Wilson
Fisher fixed points

e Two small parameters: the coupling constant g which turns on the
interaction in the Lagrangian and ε = du − d

e du := upper critical dimension,where the perturbation is marginal
e At d < du the perturbation becomes slightly relevant at the

Gaussian UV fixed point and the system flows to the infrared WF
fixed point

e The anomalous dimensions of local operators are expressed in
terms of a (scheme-dependent) loop expansion

e The vanishing of the Callan-Zymanzik β(g) fixes the relation
between g and ε and gives scheme-independent ε-expansions
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The CFT approach to Wilson Fisher fixed points

e No Lagrangians
e One small parameter: ε = du − d
e du := upper critical dimension, where the free field theory has a

scalar primary with scaling dimension ∆ = d+2
2

e In d = du − ε, and only there, there is a smooth conformal
deformation of the free theory that can be identified with the WF
fixed point

ë This smoothness fixes uniquely, to the first non-trivial order in the
ε-expansion, the anomalous dimensions and the OPE coefficients
of infinite classes of scalar local operators
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e A CFT in d dimensions is defined by a set of local operators
{Ok (x)} x ∈ Rd and their correlation functions

〈O1(x1) . . .On(xn)〉

e Local operators can be multiplied. Operator Product Expansion:

O1(x)O2(y) =
∑

k

c12k (x − y)Ok (
x + y

2
)

e O∆,`,f (x) are labelled by a scaling dimension ∆

O∆,`,f (λx) = λ−∆O∆,`,f (x)

an SO(d) representation ` (spin), and possibly a flavor index f
e among the local operators there are the identity and a (unique)

energy -momentum tensor Tµ ν(x) = Od ,2(x)

ë a CFT has no much to do with Lagrangians, coupling constants
and equations of motion, even if one often uses these terms for
simplicity
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e Acting with the Lie algebra of SO(d + 1,1) on a local operator
generates a whole representation of the conformal group. The
local operator of minimal ∆ is said a primary, the others are
descendants

e Not all the primaries define irreducible representations:
e There are primaries admitting an invariant subspace: there is a

descendant which is also primary. It corresponds to a null state
ë Denoting with [∆, `] a null state and with [∆′, `′] its parent primary,

in view of the fact that they belong to the same representation,
they must share the eigenvalues c2, c4, . . . of all the Casimir
operators C2,C4, . . .
c2(∆, `) = c2(∆′, `′) ; c4(∆, `) = c4(∆′, `′) ; . . .

e since [∆, `] and [∆′, `′] belong to the same rep.ë ∆ = ∆′ + n and
the first two eq.s fix uniquely the possible pairs
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e Eigenvalues of the Casimir operators

c2(∆, `) =
1
2

∆(∆− d) + `(`+ d − 2)

c4(∆, `) = ∆2(∆− d)2 + 1
2d(d − 1)∆(∆− d) + `2(`+ d − 2)2

+1
2(d − 1)(d − 4)`(`+ d − 2)

í There are three families of null states:

Parent primary Descendant primary
∆′k ∆k `

1− `′ − k 1− `+ k `′ + k k = 1,2, . . .
d
2 − k d

2 + k `′ k = 1,2, . . .
d + `′ − k − 1 d + `+ k − 1 `′ − k k = 1,2, . . . , `

ë The canonical scalar field φf of scaling dimension ∆φf = d
2 − 1

could have a primary descendant of dimension ∆ = d
2 + 1
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CFT, useful formulae
k The four-point function of local scalar operators Oi(x) in a

d-dimensional CFT can parametrised as

〈O1(x1)O2(x2)O3(x3)O4(x4)〉 = g(u,v)

|x12|
∆+

12 |x34|
∆+

34

(
|x24|
|x14|

)∆−12
(
|x14|
|x13|

)∆−34

∆±ij = ∆i ±∆j and ∆i scaling dimension of Oi , g(u, v) is a

function of the cross-ratios u =
x2

12x2
34

x2
13x2

24
and v =

x2
14x2

23
x2

13x2
24

k g(u, v) can be expanded in terms of conformal blocks Ga,b
∆,`(u, v)

(eigenfunctions of the Casimir operators C2,C4, . . . of
SO(d + 1,1)) :

g(u, v) =
∑
∆,`

p∆,`G
a,b
∆,`(u, v).

a = −∆−12
2 ; b =

∆−34
2
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WF fixed points
A CFT in d − ε, defined by a set of local operators Oi , is a smooth
deformation of the free field theory in d dimensions if

Ê ∃ Oi ↔ Of
i : ∆Oi = ∆Of

i
+ γ

(1)
i ε+ γ

(2)
i ε2 + . . .

Ë Of
i ×Of

j =
∑

k λ
f
ijkOf

k , Oi ×Oj =
∑

k (λf
ijk + O(ε))Ok

k This definition does not imply that primary operators of free theory
are also primary in the deformed CFT.

k For general space dimensions d the deformations
∆O → ∆Of + O(ε) do not define a one-to-one correspondence
with the spectrum of the free theory hence they are not smooth
deformations

k Consistent smooth deformations exist only at special values of d
(upper critical dimension), reduce the number of primaries for
ε 6= 0 and define WF fixed points

k They are encoded in the analytic properties of conformal blocks
Ga,b

∆,` as functions of ∆
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Poles and null states

k The conformal blocks can be written as a sum of poles (+ an
entire function in the whole ∆ complex plane)

k Poles only occur at the special [∆′k , `
′] primaries admitting a

primary descendant, i.e. a null state.
í The residue of the pole is proportional to a conformal block:

Ga,b
∆′,`′ ∼ r(∆′k )

Ga,b
∆k ,`

∆′ −∆′k

k The complete list of the null states for general d coincides with the
three families listed in the previous table.
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The scalar null state at ∆1 = d
2 + 1 = ∆φf + 2

Ga,b
∆′ = r(∆φf )

Ga,b
(∆φf

+2)

∆′−∆φf
+ rest, r(∆φf ) =

(∆2
φf
−∆2

12)(∆2
φf
−∆2

34)

4d(d−2)

In a free field theory this primary descendant has always a vanishing
residue in all the possible OPEs that generate φf :
[φp

f ]× [φp±1
f ] =

√
p ± 1[φf ] + . . . ([φf ]p = φp

f /
√

p!)
⇒ ∆−12 = ±∆φf ⇒ r(∆φf ) = 0
Turning on the interaction in d − ε, i.e. putting φn

f → φn with
∆φn = ∆φn

f
+ γ

(1)
n ε+ γ

(2)
n ε2 + · · · ⇒ r(∆′) 6= 0⇒

Ga,b
∆φ

=
(d−2)(γ

(1)
p −γ

(1)
p±1)2ε2

4d(γ
(1)
φ ε+γ

(2)
φ ε2+... )

Gaf ,bf
∆φf +2

+ . . .

For general d this is not a smooth deformation since the the free
theory does not have a local operator of dimension ∆φf +2 unless there
is a primary φn

f with that dimension, i.e.
n ∆φf = ∆φf + 2 ,⇒ d = 2

n + 1
n − 1

: only 3 solutions with integer d

(d = 3,n = 5), (d = 4,n = 3), (d = 6,n = 2)
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k Matching the coefficient of Gaf ,bf
∆φf +2

with that of Gaf ,bf
∆φn

f

we obtain

constraints among anomalous dimensions γ(i)
n = γ

(i)
φn

d = 4 :
[φf ]× [φ2

f ] =
√

2[φf ] +
√

3[φ3
f ] + spinning operators

〈φfφ
2
f φfφ

2
f 〉 ⇒ gf (u, v) = 2Gaf ,bf

∆φf
+ 3Gaf ,bf

∆
φ3

f

+ spinning conf. blocks

〈φφ2φφ2〉 ⇒ g(u, v) = (2 + O(ε))Ga,b
∆φ

+ . . .

lim
ε→0

g(u, v) = 2

Gaf ,bf
∆φf

+
ε(γ

(1)

φ2 )2

8(γ
(1)
φ + εγ

(2)
φ )

Gaf ,bf
∆φf +2=∆

φ3
f

+spinning conf. b.

γ
(1)
φ = 0 ,

(γ
(1)

φ2 )2

γ
(2)
φ

= 12.
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In the general case from the fusion rule

[φp]× [φp+1] =
√

p + 1

(
[φ] +

√
3
2

p [φ3] +

√
5
6

p(p − 1) [φ5]

)
+ . . .

we get in the d = 4 case the recursion relation

(γ
(1)
p+1 − γ

(1)
p )2

γ
(2)
φ

= 12 p2

γ
(1)
0 = γ

(1)
1 = 0 ⇒

γ
(1)
φ p ≡ γ(1)

p =
κ4

2
p(p − 1), κ4 = ±

√
12γ(2)

φ

and similarly in d = 3

γ
(1)
φ p ≡ γ(1)

p =
κ3

3
p(p − 1)(p − 2), κ3 = ±

√
10γ(2)

φ
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In d = 4 there is another way to calculate γ(1)

φ3 = 3κ4

k The scaling dimensions of the null states are universal and
depend only on d

k in d = 4− ε the primary descendant of φf has scaling dimensions
∆φf + 2 = 3− ε/2 which should coincide with the scaling
dimensions of φ3

k the smooth deformation requires
∆φ3 = 3∆φf + γ

(1)

φ3 ε = 3 + (γ
(1)

φ3 − 3
2)ε+ O(ε2)

ë γ
(1)

φ3 = 1, then κ4 = 1
3 , γ

(2)
φ = 1

108

Similarly in d = 3 ë γ
(1)
φ5 = 20κ3, matching with the primary

descendant of φ yields γ(1)
φ5 = 2, thus

κ3 =
1

10
, γ

(2)
φ =

1
1000

e All these results in d = 4 and d = 3 coincide with those obtained
with Feynman diagrams in quantum field theory
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OPE coefficients in d = 4

Other results can be obtained by considering deformations of OPE
free theories in which a φ3

f contribution on the RHS appears

[φ2
f ]× [φ5

f ] =
√

10[φ3
f ] + 5

√
2[φ5

f ] +
√

21[φ7
f ] + spinning op.

or
[φf ]× [φ4

f ] = 2[φ3
f ] +
√

5[φ5
f ] + spinning op.

the φ3
f contribution should be replaced by the conformal block of φ in

the deformed theory.

λ2
φ2φ5φ = 5γ(2)

φ ε2 + O(ε3) =
5

108
ε2 + O(ε3);

λ2
φφ4φ = 2γ(2)

φ ε2 + O(ε3) =
1
54
ε2 + O(ε3)
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Generalizations

k For any generalized free field of dimension ∆φ = d
2 − k and any

integer m one can define an upper critical dimension
du = 2k m/(m − 1) (in general a fractional number) in which

ë φ2m is a marginal perturbation
ë in du − ε there is a (generalized) WF critical point characterized by

the following spectrum of anomalous dimensions

γ
(1)
p =

m − 1
(m)m

(p −m + 1)m , (p > 1)

γ
(2)
φ =(−1)k+12

m
(

k
m−1

)
k

k
(

m k
m−1

)
k

(m − 1)2
[

(m!)2

(2m)!

]3

(1)
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O(N)- invariant models

k generalized free theories with scalar fields φi , i = 1,2, . . . ,N
transforming as vectors under O(N)

k γ
(i)
p,s ≡ anomalous dimensions of symmetric traceless rank-s

tensors φ2p φi1φi2 . . . φis − traces

ë for du = 4k γ(1)
p,s = s(s−1)+p(N+6(p+s)−4)

N+8 , γ
(2)
φ = (−1)k+1(k)k (N+2)

2k(2k)k (N+8)2

ë for du = 3k

γ
(1)
p,s =

(2p + s − 2)(s(s − 1) + p(3N + 10(p + s)− 8))

3(3N + 22)

γ
(2)
φ =

(−1)k+1(k/2)k (N + 2)(N + 4)

8k(3k/2)k (3N + 22)2
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Conclusions

Ê It is possible to define smooth deformations and Wilson Fisher
fixed points in d − ε only using CFT notions, with no reference to
Lagrangians, coupling constants or equations of motion

Ë O(N) symmetric models and generalized free fields allow to
define a more general class of WF fixed points

Ì Simple constraints on anomalous dimensions and OPE
coefficients up to O(ε2) are easily obtained. Higher order
calculations require more constraints from conformal bootstrap
equations.
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