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The Zoo

soliton codimension | homotopy group
domain wall 1 o (Mvacuum)
vortex 2 m1(G) ~
monopole 3 mo(G/H )
instanton 4 m3(G) ~
Skyrmion 3 T3 siU(Z)gl}gg)(z)/ ZZ) ~7
baby-Skyrmion 2 72(S?) ~ 7
3 73(S?) ~ 7Z

Hopfions




Plan of the talk

o five vortex equations

o integrability on constant-curvature manifolds
o Witten’s solution

o Baptista metric

o Bradlow bound(s)

o Bradlow vortices



Warm-up: the Abelian Higgs model



The Abelian Higgs model

Consider 2+1 dimensions and

1 e?
—L = 2oz F + Dusl + 5 (16 —v)%, (1)
with
D, =0,+iA,, F. =0A,-0dA,. (2)

Bogomol'nyi trick for the (static) energy density:

1 . g
£ = 55 (Fhy =292 = v*)" + D16 + iD2of? — v*Fiz — i€¥0,(6'Dy0)
3)
BPS-equations:
Fiz =e*(|¢]* —v?),  Dio+iDs¢ =0. (€N

BPS-bound:
E Z —U2/d2x F12. (5)



Axial vortices (building intuition)
Ansatz: ,
¢ =vh(r)e™?,  A;=ej—5-alr). (6)
Boundary conditions:
h(0)=0, h(c)=1, a(0)=0, a(o)=1, (7)
BPS-equations:

B o= ]X(l—a)h, =e2%(1 - h?). (8)
r r
Polar coordinates: x! + ix? = re'?;
Field strength:
N li
Fip = — ;1 . 9)

Master equation: (axially symmetric) Taubes equation
1
—u" — ;u’ =m?(e®™ - 1). (10)

with u = logh and m = ev.



General case

General solution to 1st BPS equation:

Do = dp +iAgp = (—s10s +iA)vs 1po(2) = 0, (11)
where ¢¢ is holomorphic (and ¢ is “covariantly” holomorphic):
¢ =vs"!(2,2)¢o(2)- (12)
A is given by the Maurer-Cartan form
A = —idlogs = idy. (13)
Field strenth: -
Fiy = 2iF;5, = 400. (14)
Master eqaution:
4001 = m*(e*[¢o(2)|* — 1), (15)

Setting e2¥|¢g(2)|? = e?* we get

N
400u =m?e™ — 1)+ 27> §®(z —z). (16)

=1



Vortex equation on curved surface
Assuming a compatible Riemannian metric of the form
ds® = —dt® + Qo(2,2)dzdz amn
The energy changes as
o2
E- [dxa [4 s + 90 IDuol® + G (o - v?)] . as
Thus the static energy:
. 1 B 2
o = [t n oL (0P - (o - %)
+ Q(;1|D1(725 + ZD2Q5|2 — UzQalFlg
- iszolai(ijqs)] : (19)
Giving the BPS equations on curved background:

Qy'F1z —e2(|p|* —v?) =0, Di¢p+iDy =0, (20)



Master equation on curved background

Taubes equation on curved background:

N

4 _ 2w
—90u = m?(e* — 1)+ =— §@(z —z). (21)
> -1+ 53 e )
Witten’s solution:
2u =v —log Qo (22)

yielding

N
200(v —log Q) = m*Q(Qyle” — 1) + 27 6P (z—-z)  (23)
i=1
which we can write as

N
2001log Qo =m?Q,  200v=m?e’ + 21y P (z—z). (24
i=1

Both geometry and the vortices are determined by Liouville’s
equation.



Witten’s solution

Solving Liouville’s equation yields:

4

Q=— 2
" P )
for the background geometry and
4 dg|?
v = | —— 2
e A =
vortex positions < ramification points of g.
Vortex condensate:
_ (1-[zP? |dg]’
= = APy |2

In the Poincare disc model, solutions are given by g being the
Blaschke rational function

N+1 2 — a
g =1l 1— (28)
i=1 !




Generalization of Taubes equation

Generalizing the Taubes equation
4 o &
——00u =m? —m2® — =N §?@(z—z). (29)
QO QO ; ( l)

= Manton’s five vortex equations:

N
455, _ o 2T N 5@y
Qoaau_ Co + Ce +QOZ(5 (z —zi). (30)

i=1
By rescaling Q0 and shifting u, we can reduce the possibilities to
{Cy,C} ={-1,0,1}, (31)
four of which
(Co,C) =(1,-1), (0,0), (1,0), (0,-1), (32)

cannot give a positive magnetic flux Fo > 0.



Manton’s five vortex equations

Table: Vortex equation constants Cy and C for five different theories.

Cy C | name analytic solutions on
—1 -1 || Taubes H?
0 1 || Jackiw-Pi R2, T2
1 1 | Popov S?
-1 0 || Bradlow H?
—1 1 || Ambjgrn-Olesen-Manton H?



Popov versus Taubes

Taubes: Instantons on H? x S? = vortex on H2.

Popov: Instantons on H2 x S2 = vortex on S? and change the
overall sign of RHS.



Ambjgrn-Olesen-Manton equation

e exact analytic solution on H?
e period solution on R?
o describes W condensation in the electroweak theory

@ can play a role in non-Abelian vector bootstrap mechanism
generating a primordial magnetic field



Finding analytic (integrable) vortex solutions

Consider the background Gaussian curvature:
2 _
Ky = ——001log Q. (33)
Qo
Now define the (singular) Baptista metric

Q = Qe (34)

corresponding curvature:

2 - 2 =
K = —ﬁaﬁlogQ =~y 00 (log Qo + 2u) , (35)
multiply by e? to arrive at:
e®K =Ky — 2 5ou. (36)
Qo

Use the vortex equation (ignoring delta functions from now on):

2K = Ky — Co + Ce?“. 37)



Finding analytic (integrable) vortex solutions

Rearranging:
(K — C)e™ =Ko — Co, (38)

multiply by Qo to finally arrive at:
(K —C)Q = (Ko — Co). (39)
(Known) Integrability <
K=¢C, Ky = Cy, (40)

Baptista curvature = C; and background curvature Cy.



Integrable vortex solutions

General solution:

s (14 Colz)? 2

T (1+Ciglz)?)?

dg

dz (41)




Bolza surface



Energy giving rise to the general equation

Energy:
1 e?
2 2 -1 2 2 2
E- /d x [W)FW_CQO D92 + S (CloI? — Cov )} . (42)
Static energy:
i (o 2
Estatic — /d2x Qo [262 (QO P12 +e%(Clof* — Cov2)>

—CQy D16 +iDgg 2 + Cov®Qy 'F1p

+ Cmolai(a;fqus)] . (43)

Giving the BPS equations on curved background:
Qy'F12 +Ce*(|¢> —v®) =0,  Di¢+iDs =0, (44)

Notice: the second BPS equation does not exist for C = 0.



Generalized Bradlow bounds

Integrating the general vortex equation:

27N = —CyAy + CA, (45)
where
A= / d*x Q= / d?x Qoe®, (46)
is the Baptista area.
Taubes equation =
Ay < 27N 47)

called the Bradlow bound.
Bradlow equation =

Ay =27N. (48)
Amjgrn-Olesen-Manton equation =

Ay > 27N (49)
Jackiw-Pi equation =

A =27N, (50)

i.e. the Baptista area is equal to 27 times the vortex number.



So far all exact solutions have been found are for
constant background curvature: K, = const.



But... the Bradlow equation is very simple...



The Bradlow equation

The Bradlow equation reads:

N
—400u = Qo — 27y 6P (z - z), (51)
i=1

Notice that the field is directly related to the background
geometry.



Axially symmetric Bradlow vortex on D?

Let’s consider axial symmetry and a disc:
2
u:—z—i—uo + Nlogr, (52)

Fixing the boundary condition u = 0:

7‘2—R2

=TTy

r
—=. 53
+ Nlog 7 (53)
Generalized Bradlow bound yields:
1.9
N = §R . (54)

which fixed the radius in terms of number of vortices N.



General solution

The general solution can readily be found:

N
CES :
U=-—"74 Tty ._1log‘2_zi| +28(2) +8(2), (55)

However, it is impossible to impose u = 0 at the boundary of a
circular disc.

Attempting yields
N N 2
—up =5 > log R —zf* = > log| =~
up = g 2 log |Re zi| 3 2 og Z z (56)
andg =g =0.

But, still BC are not satisfied..



Conjecture

The only solution satisfying the Bradlow equation on the flat disc,
D?, with a finite radius R < oo and the boundary condition
u(R) =0, is the axially symmetric solution (see above) where all

z2; = 0, Vi.



Approximate solution for large disc

Assume a large disc and consider:

2 _
u= ‘Z| 2 Zl og ‘Z ZL , (57)

then u at the boundary reads

u(le| =R) = 5 Zlo

Zl

|z| R

Y Tzl z|z| 2 2
22w o)

(58)

which becomes small for R > |z;|, Vi.



Toy model for Bradlow vortex

1,
2 2 1 2 1) 42
B = [ e { gl 05 Dl + 05 Yol + et
2 1 -1 2 2\ 2 -1 . 2
= . d“x Qg 502 (QO Fi9 +e“v ) + Qo "|D1¢ 4 iD3¢|
0
- iﬂale“”aaw?Dm)}
— 02 d2x F12, (59)
My
BPS-equation:
D¢ +iDyp = 2Ds¢ = 0, (60)
1 2
_ = = 61
QOF12 m=, (61)

Total energy:
E =v2m?A, = e®v*A) = 2AA,, (62)



Boundary term for the disc solution

i / d%x €, (3Dyo) = 2 / 4% B (e D)
D

. R rrle - zj| z al 1
=—i¢ dze 7 - H <4+§2(2zi)>‘ (63)

oD

is in general comphcated;
for N = 1, it simplifies:

|21/ R* 1\ |al*] 7l
2”[(1+ ®)\"1tz) w2 @D

which can be seen to vanish for z; = 0 Vi.

The negative sign can be interpreted as the boundary pulling in
the vortices and the symmetric configuration being marginally
unstable.

For axial symmetry and general N:

. R?> N R?> N
—lﬁDdZ <—42+ 22‘) =27 <—4+2> —0, (65)

bv the ceneralized Bradlow boiind




So for nonconstant background curvature..



Nontrivial backgrounds

Let us consider metrics of the form (for simplicity):

ds® =dt® — Qo(|z|2)dzd2, (66)
Formal solution:
u=uo — F(z[%) Zlog\z—zllz—i-g( ) +8(2), (67)
i=1
with
V2F = Q. (68)

Axial symmetry and u(R) = 0 yields

22
u=F(R”) ~ F(=P) + ¥ log 2. (69)



A class of metrics

Consider:
ds? = dt? — k711 £ |2/%)dz2dz, (70)

with k € Z~o, 0 € Z, k € Ryy.
Gaussian background curvature:

1 2k lk2|z|?k—2
Ky=——V2%logQy=F b —. 71
0 200 0830 :F(l T [z[2k)EH2 (71)
is indeed in general nonvanishing.
Special cases: constant curvature cases: £ =1 and ¢ = —2: upper
sign is S? and lower sign is HZ2.
Analytic solution:
2
FR) — %3172 [k*l, SN R s N e R (72)
K

where 3F5 is a hypergeometric function.



Checks

As a good check, let us first consider / = —2 and k£ = 1 for which
the Gaussian curvature is constant:

1
(-2,1) _ .~ 2
F j:4m log(1 £ |2]7), (73)
Another checkis ¢ =0 )
FOk) _ ﬂ (74)
4k’

i.e. flat disc



Other solutions

Other families of solutions that can be written as fractions are, for

=L 2 2k+2
pap _ 25 ]
" 4 A1+ k2 (75)
and for £ = 2
2 2k+2 4k+2
F2k) _ ﬂ + 2| ||
& 4 214 k2 a1t 2R (76)
and for generic ¢ > 1:
2pk
FU>1k) _ \Z| P 2|
2_:( ) TR 77

Finally, for ¢ = —1 we can write the solution as

2 P |~|2pk
(—1k) _ 2|2 o o 1] _ 2l (£1)Ple|
F 4rk? []Hz' 2.k } 2 pz_o Grph2: ¥

where ® is the Hurwitz-Lerch transcendent.



Flux matching

Using the generalized Bradlow bound:

27N = d%x Qg = Ao, (79)
M,

For the metrics:

R 2
A = 2—”/ dr r(1 ) = TR [ 1 kR
K- Jo

KR
(80)
As a consistency check, we can set ¢ = 0
2
A(()O,k) _ ﬂ’ (81)
KR

for flat disc, D2.



Flux matching

We can again simplify the hypergeometric function in cases of
positive /; in particular for ¢/ = 1:

(1k) LRZ R%*
and for ¢ = 2:
@8 7TR2 2R2k R4k
AT = <1i1+k+1+2k : 83)
and for generic ¢ > 1:
R% N (1) (£1)PR%*
PYCON '
5 > ;0 p) TipE (84)



Flux matching

Let us consider the lower sign with the radius R = 1 — ¢, where € is
an infinitesimal real number. In this case, we can expand the
Gaussian hypergeometric function to get

(k) 7T2R2 CSC(’/TK)F (1 Jrk*l)

A 21+éké7rr2
0 KD(—OT (14+ k1 +7) B

k(1+70)

€+ 0(62)> .

(85)
However, for £ > 0, the area renders finite and as a few examples
we getforR =1

(142€)+€* (

ALH < L (86)

K

kT +k
A < TR AL &7
@k _ 2rT(1+k71)
49 k T(8+k-1)’ (88)
and for general ¢ > O:
| -1
A(ZZO,k) O F(l +k ) (89)

0 K DU+ 14k



Flux matching

Let us consider ¢ = —2, for which we get

-2k _ (;_1\7 1 Iy k-1 (T
A, <1 k>HI‘<1+k>F<1 k) 72 wcsc(k>.
(90)
This area is maximal for the two limits: 2 = 1 and 2 — oo: both

yielding

A(()fz,1) — A2 = T 91)
K



Thanks! #» H 2L 5 | i | Merci! Tak! Danke! Tack!
Grazie!



Happy birthday Ken!!
MAEEBHTEI/NESA !



