Optically controlled laser-plasma electron accelerators for compact γ-ray sources

Serge Kalmykov

I. Ghebregziabher1, X. Davoine2, B. A. Shadwick3

1 Pennsylvania State University, Hazleton, PA, USA
2 CEA, DAM, DIF, Arpajon, France
3 Department of Physics & Astronomy, University of Nebraska – Lincoln, Lincoln, NE, USA

3rd European Advanced Accelerator Concepts Workshop, La Biodola, Isola d’Elba, Italy
WG 6, 26 September, 2017
Controlling transverse effects:
Match the pulse spot size to
\[R_m = \frac{2^{3/2}}{k_p^{-1}} \left(\frac{P}{P_{cr}} \right)^{1/6} \gg k_p^{-1} \]
⇒ Stable self-guiding & Full electron cavitation

Longitudinal effects
– red-shift of the pulse leading edge & self-compression due to negative GVD of radiation in plasma –
remain uncontrolled
⇒ Reduced phase velocity of the bubble
⇒ Early electron dephasing, limited energy gain
⇒ Massive continuous self-injection

Matching strategy leads to unfavorable energy scaling

Match pulse length and spot size to make electrons dephase as the pulse depletes:

\[\tau_L = \frac{2R_m}{3c} \]

Energy gain at dephasing/depletion:

\[\Delta E \ [\text{GeV}] = 0.125 \ (P[\text{PW}])^{1/3} \ (n_{20} \ \lambda_{\mu m}^2)^{-2/3} \]

Robust self-guiding & self-injection:

\[\frac{P}{P_{cr}} > 10 \ \Rightarrow \ n_{20} \ \lambda_{\mu m}^2 > 1.8 \times 10^{-3} \ (P[\text{PW}])^{-1} \]

Stringent scaling of the energy gain:

\[\Delta E \ (\text{GeV}) < 8.6 \ P[\text{PW}] \]

\[\Delta E \approx 1 \ \text{GeV} \ \Rightarrow \ P \approx 120 \ \text{TW} \]

\[\tau_L \approx 32 \ \text{fs} \]

\[L_{\text{dephasing}} \approx 0.7 \ \text{cm} \]

Regime is accessible, but

the repetition rate is <<<< 10 Hz
Inverse Compton (Thomson) scattering and its requirements for e-beams

From: C. P. J. Barty, LLNL Proposal for the ELI-NP γ-Source, ELI-NP Gamma Source Meeting, 04/18/2011

- Photon flux $> 10^6$/shot/full bandwidth

 E-beam 5-D brightness $>10^{16}$ A/m2 [A. Cianchi et al., NIM A 829, 343 (2016)]

 Sub-% energy spread in the e-beam

- Photon energy 10-20 MeV – challenge

 GeV e-beams needed – scaling suggests using PW-/kJ-scale pulses

- Repetition rate in kHz to raise the dosage – major challenge

 MW-class average-power laser amplifiers are not going to be available soon
Raising the repetition rate:
GeV LPA with sub-Joule (10-TW-scale) pulses

Moderate average power:

1. Enables **high repetition rate** needed by applications that require high dosage (medicine, nuclear fluorescence studies *etc.*)

 1J @1 kHz = 1 kW — a hard, yet manageable laser engineering problem.

2. Helps **reduce the size and cost of facilities**.

3. **Lifts the barriers for first-principle modeling.**

4. Enables **real-time control** of the laser pulse phase (using genetic algorithms) for optimization of the acceleration process

Transform-limited, 10-TW-class pulse rapidly destroys itself and e-beam 😞

1. Self-guiding needs a dense, highly dispersive plasma (\(\sim 10^{19} \text{ cm}^{-3} \))

2. Self-compression of the pulse

 (a) keeps the energy gain below half-GeV

 (b) forces expansion of the bubble, hence massive dark current

CALDER-Circ code:

VORPAL-PD code:

<table>
<thead>
<tr>
<th>Power / energy / length</th>
<th>70 TW / 2.1 J /30 fs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma density, (n_0)</td>
<td>(6.5 \times 10^{18} \text{ cm}^{-3})</td>
</tr>
</tbody>
</table>

\(P/P_{cr} \approx 16 \)

E \(\approx 420 \text{ MeV} + \text{huge tail} \)
Large bandwidth \((\Delta \lambda \sim \lambda_0)\) and negative chirp solve the problem 😊

These features:

- mitigate the frequency red-shift
- slow down pulse self-compression in dense plasmas \((\sim 10^{19} \text{ cm}^{-3})\)
- extend the dephasing length, boosting the energy gain to GeV level
- strongly reduce the energy tail.

HIGH EXPECTATIONS: Background-“free” near-GeV acceleration with 1.4J laser energy

20–30 fs pulse

\(n_0 = 6.5 \times 10^{18} \text{ cm}^{-3}\)

![Graph showing energy distribution with and without chirp effects]
Temporally advanced blue-shifted "head" protects the optical driver from nonlinear erosion

Head: 20 fs, 0.7 J, $\lambda_{\text{tail}} = 0.8 \mu m$
Tail: 20 fs, 0.7 J, $\lambda_{\text{head}} \approx 0.53 \mu m$

orthogonally polarized (incoherent mixing)

- Frequency shift in Raman cells with subsequent conventional CPA
 [F. B. Grigsby et al., JOSA B 25, 346 (2008)]
- Energy-efficient methods of 2nd harmonic pulse generation.
Acceleration with a single TLP: Electron beam ruined

Pulse at dephasing:
Compressed to a single cycle and 60%-depleted

“Photon phase-space rotation”: mid-IR photons slide into the bubble

QME bunch:
\[\langle E \rangle = 427 \text{ MeV} \]
\[\sigma_E / \langle E \rangle = 6\% \]
\[\varepsilon_{\text{norm, } \perp} = 0.7 \text{ mm mrad} \]
Charge \[0.495 \text{ nC} \]
RMS current \[90 \text{ kA} \]
RMS divergence \[2.9 \text{ mrad} \]

5-D brightness:
\[2\langle I \rangle (\pi \varepsilon_{\text{norm, } \perp})^{-2} = 3.8 \times 10^{16} \text{ A/m}^2 \]

Simulation codes: WAKE and CALDER-Circ (energy spectra)
Bi-color stack: Doubling electron energy

QME e-beam at dephasing ($L_{\text{dephasing}} \times 1.8$):

- $\langle E \rangle$: 882 MeV ($\times 2$ of reference)
- $\sigma_E/\langle E \rangle$: 3.2%
- $\varepsilon_{\text{norm, } \perp}$: 0.4 mm mrad ($\times 1/2$ of reference)

Charge: 73 nC
RMS current: 88 kA (same as reference)
RMS divergence: 1.35 mrad

5-D brightness: 1.1×10^{17} A/m2 ($\times 3$ of reference)

Tail at dephasing:
Reduction by a factor 6 in charge, by a factor 20 in average flux
Improvement in Thomson scattering signal

E-beam phase space and flux (in 10^7 MeV$^{-1}$) at dephasing

Photon flux (in 10^{12} MeV$^{-1}$ sr$^{-1}$) in the e-beam propagation direction
- head-on collision
- on-axis observation

- Photon energy boost by a factor 4.2 (to 16 MeV)
- Increase in the signal to background ratio, from 2:1 to 4:1

Thomson back-scattering (almost linear regime, quasi-planar-wave interaction):
Interaction laser pulse: Linearly polarized, $r_0 = 16.8 \, \mu m$; $a_0 = 0.1$; $\lambda = 0.8 \, \mu m$; FWHM 250 fs
Time delay in the stack controls γ-photon flux and energy

Electron energy spectra at dephasing

γ-ray flux in the direction of e-beam propagation

<table>
<thead>
<tr>
<th>QME γ-ray signals</th>
<th>Reference</th>
<th>Stack wit full overlap ($T = 0$)</th>
<th>Stack with $T = 15$ fs</th>
<th>$z = 1.47$ mm</th>
<th>Dephasing (3.07 mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\langle E_\gamma \rangle$ (MeV)</td>
<td>3.85</td>
<td>5.67</td>
<td>4.35</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>$\sigma_E / \langle E_\gamma \rangle$, %</td>
<td>18.7</td>
<td>17.1</td>
<td>21.3</td>
<td>15.5</td>
<td></td>
</tr>
<tr>
<td>N_γ per Ω_d</td>
<td>8.95×10^6</td>
<td>5.08×10^6</td>
<td>1.52×10^6</td>
<td>1.58×10^6</td>
<td></td>
</tr>
<tr>
<td>Energy (μJ)/power in Ω_d</td>
<td>5.5 (1 GW)</td>
<td>4.6 (1.2 GW)</td>
<td>1.1 (1.3 GW)</td>
<td>4 (4.7 GW)</td>
<td></td>
</tr>
</tbody>
</table>
Few-% energy spread of e-beam imparts 15–20% bandwidth into the Thomson signal

Full phase space of e-beam:

\[\langle p_z \rangle = 1726 \, m_e c, \quad \sigma_{p_z} = 56 \, m_e c \quad (3.25\% \text{ energy spread}) \]
\[\langle p_r \rangle = 0, \quad \sigma_{p_r} = 2.3 \, m_e c \quad (1.35 \text{ mrad divergence}) \]

Reduced phase space I:

\[\langle p_z \rangle = 1726 \, m_e c, \quad \sigma_{p_z} = 0 \quad (\approx 0\% \text{ energy spread}) \]
\[\langle p_r \rangle = 0, \quad \sigma_{p_r} = 2.3 \, m_e c \quad (1.35 \text{ mrad divergence}) \]

Reduced phase space II:

\[\langle p_z \rangle = 1726 \, m_e c, \quad \sigma_{p_z} = 56 \, m_e c \quad (3.25\% \text{ energy spread}) \]
\[\langle p_r \rangle = 0, \quad \sigma_{p_r} = 0 \quad (\text{zero divergence}) \]

\[\langle E_\gamma \rangle = 16 \, \text{MeV} \]
\[\sigma_E = 2.5 \, \text{MeV} \quad (15.5\% \text{ spread}) \]

\[E_\gamma \approx 4E_{\text{int}} \langle \gamma_e \rangle^2 \approx 18.35 \, \text{MeV} \]

\[E_{\text{int}} = 1.55 \, \text{eV} \]
Electrons from stack-driven LPA for quasi-monochromatic Thomson sources

- High-power (1–5 GW), fs-length γ-ray pulses contain $> 10^6$ photons in the sub-μsr observation solid angle

- This flux corresponds to the full bandwidth (1–2.5 MeV) imparted by a few-% energy spread in the e-beam

- Mean photon energy is tunable between 4 and 16 MeV without losing photons in the μsr observation solid angle $\Omega_d = (\pi/2)\langle\gamma_e\rangle^{-2}$

- Signal to background ratio is better than 4:1

- Changing time delay in the stack permits accurate tuning e/γ energy and flux, with the same laser energy and frequency ratio in the stack

- Sub-Joule energy in stack components affords kHz repetition rate at the affordable average power

- Expectation of 10^{10} ph/s flux (good for NRF applications).
Trains of multi-color X/γ-ray pulses: What are they good for?

Comb-like X/γ - ray beam: Train of wave packets with an adjustable frequencies and time delays

Source: a comb-like e-beam – a train of bunches with adjustable energies and time delays

A bi-color X-ray beam @ SPARC-LAB

Generation mechanism: bi-color FEL or inverse Compton (Thomson) scattering

Images:

V. Petrillo et al., Dual-color X-rays from Thomson or Compton sources, Proc. SPIE 9512, 95121E (2015)

Applications:

- **Ultrafast** (on a fs- to ps-scale) pump-probe experiments in AMO or HEDP
- Time-domain spectroscopy [J. F. Cahoon et al., Science 319, 1820 (2008)]
Generating comb-like e-beams in stack-driven LPA

Stack (with $T = 15$ fs) permits focusing head and tail differently.

Weak focusing of the tail ($R_{\text{tail}} \geq R_{\text{head}}$) destabilizes the bubble. Periodic injection generates a polychromatic train of bunches.

\[R_{\text{tail}} = R_{\text{head}} = 13.6 \, \mu\text{m} \]

\[R_{\text{tail}} = (3/2)^{1/2} R_{\text{head}} \]

\[R_{\text{tail}} = 2^{1/2} R_{\text{head}} \]

\[R_{\text{tail}} = 3^{1/2} R_{\text{head}} \]

— too weak focusing makes injection ineffective

Brightness ($10^{17} \, \text{A/m}^2$):

(1) 0.44

(2) 0.96

\[\sigma_{E}/\langle E \rangle: \]

(1) 3.2\%

(2) 2.4\%
Generating X/γ-ray pulse trains using comb-like e-beams from stack-driven LPA

Characteristics of γ-ray energy bands (QME pulses):

$\sigma_E/\langle E_\gamma \rangle$: 14.7 to 19.5%

N_γ per Ω_d: 0.4 to 1.6×10^6

Total energy per band, in detector solid angle, $\Omega_d = (\pi/2)\langle \gamma_e \rangle^{-2}$: 0.17 to 4 μJ

<table>
<thead>
<tr>
<th>Case 3</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\langle E_\gamma \rangle$ (MeV)</td>
<td>2.8</td>
<td>7.25</td>
<td>15.8</td>
</tr>
<tr>
<td>$\sigma_E/\langle E_\gamma \rangle$, %</td>
<td>19.4</td>
<td>14.7</td>
<td>15.7</td>
</tr>
<tr>
<td>N_γ per Ω_d</td>
<td>0.91×10^6</td>
<td>0.62×10^6</td>
<td>1.25×10^6</td>
</tr>
<tr>
<td>Energy/power per Ω_d (\textmu J)</td>
<td>0.4 (0.17 GW)</td>
<td>0.72 (0.75 GW)</td>
<td>3.16 (4.27 GW)</td>
</tr>
</tbody>
</table>
Propagating the stack in a channel (a) adds more control, (b) further boosts electron energy.

Same stack as before, with a $T = 15$ fs delay. Stack head and tail have the same spot sizes, matched to the single-mode channel.

The e-comb absorbs 10% of laser energy.

The peak energy 1.2 GeV (vs ~ 430 MeV of the reference case).

Progress of comb-like e-beam through dephasing and generation of multi-color γ-ray beams

$z = 1.51$ mm

$z = 2.23$ mm

$z = 2.91$ mm

All four bunches have 5-D brightness above 1.4×10^{17} A/m2

<table>
<thead>
<tr>
<th>4-color γ-ray signal</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\langle E_\gamma \rangle$ (MeV)</td>
<td>24.1</td>
<td>12.6</td>
<td>4.67</td>
<td>2.27</td>
</tr>
<tr>
<td>$\sigma_E / \langle E_\gamma \rangle$, %</td>
<td>15</td>
<td>18.4</td>
<td>20</td>
<td>22.6</td>
</tr>
<tr>
<td>N_γ per Ω_d</td>
<td>1.64×10^6</td>
<td>0.66×10^6</td>
<td>0.585×10^6</td>
<td>0.595×10^6</td>
</tr>
<tr>
<td>Energy/power per Ω_d (μJ)</td>
<td>6.5 (10.3 GW)</td>
<td>1.34 (1.8 GW)</td>
<td>0.46 (0.39 GW)</td>
<td>0.22 (0.34 GW)</td>
</tr>
</tbody>
</table>
Designing the LPA drive pulse as an incoherent stack of independent sub-Joule, transform-limited pulses with a large difference frequency ($\Delta \omega \sim \omega_0$) permits an unprecedented freedom in e-beam phase space control, suppressing the background and increasing 5-D brightness of individual bunches above $\sim 10^{17}$ A/m2.

Stack-driven LPAs promise generation of fs-length, ultra-bright, near-GeV electron bunches at a kHz repetition rate, with affordable average power.

These bunches (or trains of bunches) promise to drive quasi-monochromatic (or comb-like) Thomson-scattering γ-ray sources, tunable into 10’s of MeVs, while keeping the γ-ray pulse length extremely short (100’s of as) and the number of photons high ($> 10^6$).

ACKNOWLEDGEMENTS

Inverse Thomson scattering simulations were completed by S.Y.K. utilizing the Holland Computing Center of the University of Nebraska.

SYK cordially thanks Natasha Pavlovikj of HCC for assistance.
Addenda
Simulation tools: fully relativistic PIC codes & particle tracker for radiation calculation

- Exploring optical pulse evolution in the plasma and beam loading effects: **WAKE**
 (extended-paraxial, ponderomotive guiding center, quasi-static)

- Accurate simulation of self-injection and acceleration: **CALDER-Circ**
 (quasi-cylindrical, fully explicit; poloidal mode decomposition of fields and currents)
 [A. F. Lifschitz et al., *J. Comp. Phys.* **228**, 1803 (2009)]

Also: numerical Cherenkov-free EM solver; 2nd or 3rd order macro-particles
[R. Lehe, A. F. Lifschitz et al., PR-STAB Beams 16, 021301 (2013)]

- **Inverse Thomson scattering code**

fully relativistic particle tracker; laser beam is paraxial; radiation calculation using classical formula

\[
\frac{d^2I}{d\omega d\Omega} = 2|A(\omega)|^2, \quad A(\omega) = \left(\frac{e^2}{8\pi^2c}\right)^{1/2} \int_{-\infty}^{\infty} \exp\left[\frac{n \times [(n - \beta) \times \hat{\beta}]}{(1 - \beta \cdot n)^3}\right]dt, \quad \frac{d^2I_\omega}{d\omega d\Omega} = \frac{1}{N_s} \sum_{i=1}^{N_s} \frac{d^2I_i}{d\omega d\Omega}.
\]
Stack vs. reference: Suppressing continuous injection

Due to much slower self-compression of the stack

- bubble expands slowly
- continuous injection insignificant (hence the weak energy tail)