Resonant excitation of surface plasma waves in the relativistic regime: electron bunches and high order harmonic generation

G. Cantono1,2,3, T. Ceccotti1, L. Fedeli2,3, A. Sgattoni2 and A. Macchi2,3

1PHI/LIDYL, CEA, CNRS, Université Paris-Saclay, France
2CNR/INO, Laboratorio Adriano Gozzini, Pisa, Italy
3Dipartimento di Fisica Enrico Fermi, Università di Pisa, Pisa, Italy
Surface Plasmons (SPs): electron oscillation resonant modes at a steep metal-dielectric interface

Dielectric = vacuum, $\varepsilon_M = 1$
Metal = laser-produced plasma, $\varepsilon_D = 1 - \frac{\omega_p^2}{\omega^2}$

$$k_{SP}(\omega) = \frac{\omega}{c} \sqrt{\frac{\varepsilon_M \varepsilon_D}{\varepsilon_M + \varepsilon_D}}$$

$$k_{SP}(\omega) = \frac{\omega}{c} \sqrt{\frac{\omega_p^2 - \omega^2}{\omega_p^2 - 2\omega^2}}$$

$$k_\parallel = \frac{\omega}{c} \sin \phi + \frac{2\pi}{d}$$
$$k_{SP} = \frac{\omega}{c} \sqrt{\frac{\omega_p^2 - \omega^2}{\omega_p^2 - 2\omega^2}}$$

$$k_\parallel = (\omega/c) \sin \theta$$

$$\Delta k = \omega_L / \sqrt{2}$$
SPW matching conditions

Surface Plasmons (SPs): electron oscillation resonant modes at a steep metal-dielectric interface

Dielectric = vacuum, $\varepsilon_M = 1$

Metal = laser-produced plasma, $\varepsilon_D = 1 - \frac{\omega_p^2}{\omega^2}$

\[
k_{SP}(\omega) = \frac{\omega}{c} \sqrt{\frac{\varepsilon_M \varepsilon_D}{\varepsilon_M + \varepsilon_D}} \quad \rightarrow \quad k_{SP}(\omega) = \frac{\omega}{c} \sqrt{\frac{\omega_p^2 - \omega^2}{\omega_p^2 - 2\omega^2}}
\]

\[
\frac{\omega}{c} \sin \phi + n \frac{2\pi}{d} = \frac{\omega}{c} \sqrt{\frac{\omega_p^2 - \omega^2}{\omega_p^2 - 2\omega^2}}
\]

\[
\sin \phi_{res} + n \frac{\lambda}{d} \approx 1 + \frac{1}{2} n_e
\]
SPW matching conditions (experimental)

Too high ns ASE \Rightarrow Surface structure is washed out before the main peak fs peak arrival

Need for a high contrast ratio

Relativistic regime ($I_{\text{laser}} > 10^{18} \text{ W/cm}^2$) \Rightarrow Contrast better than 10^{10}
First experimental observation of relativistic SP resonant excitation

Laser UHI100 at CEA Saclay
✓ High intensity $I > 5 \times 10^{19} \text{ W/cm}^2$
✓ Contrast ratio $> 10^{12}$

Bigongiari et al., Phys. Plasmas 18, 102701 (2011)

2.5x increase of max E_p

Electrons can be directly accelerated **along the target surface** by the SP intense fields.

\[
k^2 = \frac{\omega^2}{c^2} \frac{\omega_p^2 - \omega^2}{\omega_p^2 - 2\omega^2} = \frac{\omega^2}{c^2} \frac{\alpha - 1}{\alpha - 2} \quad v_f = \frac{\omega}{k} = c \frac{(\alpha - 2)^{1/2}}{(\alpha - 1)^{1/2}} < c
\]

Energy gain, emission angle and acceleration length in the laboratory frame in the strongly relativistic limit \(W' \gg m_e c^2 \)

\[
\varepsilon_f \approx \frac{eE_{SP} \gamma_f^2}{k} \approx m_e c^2 a_{SP} \left(\frac{n_e}{n_c} \right) \quad \tan \phi_e = \frac{p_x}{p_y} \approx \gamma_f^{-1} \quad \ell_a = \varepsilon_f/eE_{SP} \approx \lambda \alpha/2\pi
\]

\(a_{SP} = eE_{SP}/m_e \omega c \)
First experimental observation of relativistic SP driven e⁻ acceleration

Laser UHI100 at CEA Saclay

First experimental observation of relativistic SP driven e⁻ acceleration

Laser UHI100 at CEA Saclay

First experimental observation of relativistic SP driven e^- acceleration

Laser UHI100 at CEA Saclay

Systematic study of SP driven e^- acceleration

Thin Gratings
Heat embossed Mylar
thickerness: 10 µm
peak to valley depth: 250 nm
sinusoidal profile

<table>
<thead>
<tr>
<th>Model</th>
<th>d (µm)</th>
<th>ϕ_{res} (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G15</td>
<td>1.4</td>
<td>15°</td>
</tr>
<tr>
<td>G30</td>
<td>2</td>
<td>30°</td>
</tr>
<tr>
<td>G45</td>
<td>3.4</td>
<td>45°</td>
</tr>
</tbody>
</table>

Solid gratings (9.5 mm thick):
Glass substrate + Al coating
$\phi_{res} = 30°$
blaze angles: 4°, 6°, 13°, 22° and 28°
Different gratings at resonance produce collimated, intense, energetic electron bunches.

<table>
<thead>
<tr>
<th>at resonance:</th>
<th>G15</th>
<th>G30</th>
<th>G45</th>
</tr>
</thead>
<tbody>
<tr>
<td>angular divergence FWHM (deg)</td>
<td>5.5</td>
<td>6.1</td>
<td>5.6</td>
</tr>
</tbody>
</table>
Different gratings at resonance always produce collimated, intense, energetic electron bunches.

<table>
<thead>
<tr>
<th>at resonance:</th>
<th>G15</th>
<th>G30</th>
<th>G45</th>
</tr>
</thead>
<tbody>
<tr>
<td>angular divergence FWHM (deg)</td>
<td>5.5</td>
<td>6.1</td>
<td>5.6</td>
</tr>
<tr>
<td>charge in the bunch (pC)</td>
<td>120</td>
<td>280</td>
<td>110</td>
</tr>
</tbody>
</table>
Different gratings at resonance always produce collimated, intense, energetic electron bunches.

<table>
<thead>
<tr>
<th>at resonance:</th>
<th>G15</th>
<th>G30</th>
<th>G45</th>
</tr>
</thead>
<tbody>
<tr>
<td>angular divergence FWHM (deg)</td>
<td>5.5</td>
<td>6.1</td>
<td>5.6</td>
</tr>
<tr>
<td>charge in the bunch (pC)</td>
<td>120</td>
<td>280</td>
<td>110</td>
</tr>
<tr>
<td>maximum energy (MeV)</td>
<td>11</td>
<td>18</td>
<td>17</td>
</tr>
</tbody>
</table>
Different gratings at resonance always produce collimated, intense, energetic electron bunches.

<table>
<thead>
<tr>
<th>at resonance:</th>
<th>G15</th>
<th>G30</th>
<th>G45</th>
</tr>
</thead>
<tbody>
<tr>
<td>angular divergence FWHM (deg)</td>
<td>5.5</td>
<td>6.1</td>
<td>5.6</td>
</tr>
<tr>
<td>charge in the bunch (pC)</td>
<td>120</td>
<td>280</td>
<td>110</td>
</tr>
<tr>
<td>maximum energy (MeV)</td>
<td>11</td>
<td>18</td>
<td>17</td>
</tr>
<tr>
<td>$\Delta \theta$ (deg)</td>
<td>0.7</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>$\Delta \phi$ (deg)</td>
<td>0.2</td>
<td>0.05</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Different gratings at resonance always produce collimated, intense, energetic electron bunches.

<table>
<thead>
<tr>
<th>at resonance:</th>
<th>G15</th>
<th>G30</th>
<th>G45</th>
</tr>
</thead>
<tbody>
<tr>
<td>angular divergence FWHM (deg)</td>
<td>5.5</td>
<td>6.1</td>
<td>5.6</td>
</tr>
<tr>
<td>charge in the bunch (pC)</td>
<td>120</td>
<td>280</td>
<td>110</td>
</tr>
<tr>
<td>maximum energy (MeV)</td>
<td>11</td>
<td>18</td>
<td>17</td>
</tr>
<tr>
<td>Δθ (deg)</td>
<td>0.7</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>Δφ (deg)</td>
<td>0.2</td>
<td>0.05</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Different gratings at resonance always produce collimated, intense, energetic electron bunches.

<table>
<thead>
<tr>
<th>at resonance:</th>
<th>G15</th>
<th>G30</th>
<th>G45</th>
</tr>
</thead>
<tbody>
<tr>
<td>angular divergence FWHM (deg)</td>
<td>5.5</td>
<td>6.1</td>
<td>5.6</td>
</tr>
<tr>
<td>charge in the bunch (pC)</td>
<td>120</td>
<td>280</td>
<td>110</td>
</tr>
<tr>
<td>maximum energy (MeV)</td>
<td>11</td>
<td>18</td>
<td>17</td>
</tr>
<tr>
<td>$\Delta \theta$ (deg)</td>
<td>0.7</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>$\Delta \phi$ (deg)</td>
<td>0.2</td>
<td>0.05</td>
<td>0.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>at resonance:</th>
<th>SG4</th>
<th>SG6</th>
<th>SG13</th>
<th>SG22</th>
<th>SG28</th>
</tr>
</thead>
<tbody>
<tr>
<td>angular divergence FWHM (deg)</td>
<td>7</td>
<td>5.8</td>
<td>5.4</td>
<td>4.7</td>
<td>13</td>
</tr>
<tr>
<td>charge in the bunch (pC)</td>
<td>310</td>
<td>120</td>
<td>2300</td>
<td>1100</td>
<td>1700</td>
</tr>
<tr>
<td>maximum energy (MeV)</td>
<td>13</td>
<td>12</td>
<td>18</td>
<td>10</td>
<td>8.5</td>
</tr>
<tr>
<td>$\Delta \theta$ (deg)</td>
<td>0.8</td>
<td>0.5</td>
<td>0.2</td>
<td>0.2</td>
<td>0.6</td>
</tr>
<tr>
<td>$\Delta \phi$ (deg)</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.2</td>
</tr>
</tbody>
</table>
High order harmonic generation and SP resonant excitation

\[\frac{n \lambda}{md} = \sin \phi_i + \sin \phi_{mn} \]
High order harmonic generation and SP resonant excitation

\[\sin \phi_i = \sin \phi_{res} \]
High order harmonic generation and SP resonant excitation

Electron spectrometer (2-30 MeV)

XUV spectrometer: spectral range $\omega_H/\omega_L = [9,45]$

35° incidence, NO preplasma

Flat

0-150 bit range

0-40 bit range

G30

specular

twd tangent

33° 34° 36° 82° 83° 84° 85°

N^{th}

12 10 8 6 4 2
High order harmonic generation and SP resonant excitation

XUV spectrometer: spectral range $\omega_H/\omega_L=[9,45]$

Electron spectrometer (2-30 MeV)

35° incidence, NO preplasma

10th harmonic from 2D PIC simulation

Flat @45° inc
G30 @35° inc

specular
twd tangent
High order harmonic generation and SP resonant excitation

Electron spectrometer (2-30 MeV)

XUV spectrometer: spectral range $\omega_H/\omega_L = [9, 45]$

Best HH efficiency for:
- High order harmonic generation
- SP resonant excitation

ϕ_{res}

$0-255$ bit range
$0-150$ bit range

35° incidence, WITH optimized preplasma

Flat

N^h

specular

33° 34° 36° 82° 83° 84° 85°

$G30$

$L_{pp} \sim 0.13\lambda \simeq 100$ nm
(smaller than the grating depth)
The **maximum harmonic order** is higher with gratings at resonance. Electrons at tangent are still detected despite the pre-plasma.
The maximum harmonic order is higher with gratings at resonance. Electrons at tangent are still detected despite the pre-plasma.
Summing up

- Ultra-high contrast laser systems allow to access high field plasmonic
- SPW do improve laser-target coupling and result in enhanced proton and electron acceleration
- High energy and charge (> 2nC), low divergence electron beams driven by SPW have been observed and characterized for different kinds of grating
- Increase of high order harmonic production far from specular reflected laser beam
- Open issues: no theory for plasmonic at relativistic intensities

electron beam properties: emittance, duration
Thank you for your attention

giada.cantono@cea.fr tiberio.ceccotti@cea.fr