Heterodyne measurement of Coherent Transition Radiation (CTR) from Seeded Self-Modulation (SSM) in AWAKE

Falk Braunmueller, P. Muggli, M. Martyanov, F. Batsch, K. Rieger, A. Caldwell & AWAKE team

27 September 2017

3rd European Advanced Accelerator Concepts Workshop

Elba, Italy
Outline

- Setup of heterodyne CTR-measurements
- Measurement principle
- Measurement processing
- Main result: $f_{\text{CTR}} = f_{\text{plasma}}(n_{\text{Rb}})$
- Further results: Dependence of SSM on Rb-density gradient
SSM-Diagnostics via CTR

Coherent transition radiation @ \(f_{\text{modulation}} \) (90-280GHz)

F. Batsch, Poster session 19:30

Coupled into WR90 waveguide \(\rightarrow \) 15m transmission

Courtesy: T. Haubold
SSM-Diagnostics via CTR

Coherent transition radiation @ $f_{\text{modulation}}$ (90-280GHz)

Frequency: Heterodyne mixing

Amplitude: Schottky diodes

Laser-based

Waveguide-based
Diagnostic setup

- 3 Heterodyne receivers for CTR:
 - Laser-based mixing (last presentation)
 - WR8 / 90-140GHz: Radiometer-systemnew
 - WR3.4 / 255-270GHz: VDI-system from EPFL
 \(\Rightarrow\) replaced by WR4.3/170-260GHz system
- Can detect 2nd harmonics of \(f_{\text{modulation}}\)
Measurement principle

Signal:
\[f_{RF} \sim 260\text{GHz} \]
Reference:
\[f_{ref} \sim 270\text{GHz} \]
Intermediate frequency:
\[f_{IF} \sim 10\text{-}20\text{GHz} \]

- \(f_{ref} \) from frequency-multiplication of tunable local oscillator
 \[f_{ref} = n_{\text{harm}} f_{LO} \]
- Also mixing with weaker parasitic reference frequencies
 \[f_{ref} = n_{\text{harm},1} f_{LO} \cdot (n_{\text{harm},1} = n_{\text{harm}} +/\!/- 1, \ldots) \]
- Confirm that signal on oscilloscope is from mixing with correct reference frequency:

\[\text{measured \ } \left| f_{IF} - n_{\text{harm}} f_{LO} \right| \]

\[\Rightarrow \quad n_{\text{harm}} = \frac{\Delta f_{IF}}{\Delta f_{LO}} \]
CTR-signal from mixer

- Short signal, close to expected length
- Very precise
- Strong single-frequency-component (find via spectrogram) \(\rightarrow f_{IF} \)
Data-selection

Choice of useful data:

- Signal level large enough, e.g. > 40mV

- Use only ‘prominent peaks’:
 Significantly higher than other IF-peaks

(shot-to-shot variation of parameters)

Previously: selection ‘by eye’
CTR-analysis

Fit f_{IF} vs. f_{LO} to check n_{harm}

→ In general, expected $n_{harm} = 8 / 12 / 24$ is confirmed (sometimes ambiguous)

→ $f_{RF} = n_{harm} f_{LO} +/- f_{IF}$

→ Average & standard deviation of f_{RF} (here: 255.9GHz +/- 1.4GHz)

Unclear if from change of CTR-freq.
Results of CTR-analysis

Result: \(f_{\text{CTR}} \) vs. \(n_{\text{RB}} \)

\[f_{\text{CTR}} = f_{\text{plasma}}(n_{\text{RB}}) \]

\(\rightarrow \) SSM with \(f_{\text{CTR}} = f_{\text{plasma}} \) as predicted

\(\rightarrow \) Rb fully ionized

- Good match between fundamental & 2nd harmonics

\(\rightarrow \) proof that correct \(n_{\text{harm}}(f_{\text{LO}}) \) was chosen

- Excellent fit result: parameters within 0.3%

- Error analysis incomplete

Preliminary result

\[\text{fit result: } f_{\text{CTR}} = A n_{\text{RB}}^B, \quad A = 90.1 \quad / \quad B = 0.499 \]

(Theory: \(f_{\text{plasma}} = 89.8 \sqrt{n_{\text{RB}}} \) GHz, with \(n_{\text{RB}} \) in \([10^{14} \text{ cm}^{-3}]) \)
CTR-amplitude

Amplitude increasing with beam-charge

\(E_{\text{CTR}} \sim q \), but:
- SSM-amplitude affected in nontrivial way
- Emission angle & coupling may be affected

\(\Rightarrow \) Promising for future analysis
f_{CTR}-dependence on n_{Rb}-gradient

- Frequency increasing with positive gradient, but basically constant with negative gradient
 → Explanation from SSM?
SSM-Dependence on n_{Rb}-gradient

No/Small gradient \Rightarrow microbunches reach less far

Gradient >5%:
- Microbunches longer visible after seeding
- f_{RF} corresponds more to $f_{\text{plasma}}(\text{end})$
\Rightarrow longer interaction in plasma?

Negative Gradient:
$f_{\text{CTR}} = 129\text{GHz} \approx \text{const.}$

Check with simulations ?!

Preliminary result & possibly varying parameters
Summary

- Several successful upgrades of heterodyne CTR setup
- Consistent results after data down-selection
- Very successful measurement of $f_{CTR}=f_{\text{plasma}}(n_{Rb})$, confirming full ionization + character of SSM
- Clear correlation between beam charge & signal amplitude
- Investigation of self-modulation physics:
 - $f_{CTR}=f_{\text{plasma}}(n_{Rb},\text{downstream})$ for positive n_{Rb}-gradient
 - Longer persisting microbunches
- Analysis to be continued

Preliminary results
Thanks for your attention!

Acknowledgement (255-275 GHz-system):
Work supported by Requip, Sinergia and (No: 200020-120503/1), grants of the Swiss National Science Foundation, by the Ecole Polytechnique Federale de Lausanne (EPFL) and by Faculty of Basic Sciences of EPFL.
Additional slides
Analysis/Measurement To-Do-List

- Apply criterion of prominent peak to all points

- Analysis of signal amplitude: need to correlate with ‘good shots’ from streak camera & two-screen halo-BTV
 • Frequency-variations correlated with alignment/ angle of p⁺-defocusing/…?

- Ratio of signal amplitudes \(V(2^{\text{nd}} \text{harmonics})/V(\text{fundamental}) \) vs. p⁺ charge
 • idea: more non-linear \(\rightarrow \) stronger 2\(^{\text{nd}}\) harmonics?
Measurement principle

- \(f_{RF} = n_{harm} f_{LO} +/− f_{IF} \)
 - known
 - measured

To be determined

Find \(n_{harm} \) by scanning \(f_{LO} \):

\[
n_{harm} = \frac{\Delta f_{IF}}{\Delta f_{LO}}
\]
Heterodyne Measurement

- Measure intermediate frequency (IF) between CTR-signal (RF) and known reference
- Reference signal from frequency-multiplied tunable local oscillator (LO)
- Waveguide Transmission of RF over 15m
- Small measurement bandwidth
- Good signal efficiency

VDI heterodyne receiver from Swiss Plasma Center (SPC) at EPFL (Lausanne)
Waveguide Transmission Line

- Detector behind shielding wall
- 15m of overmoded waveguide WR90 (fundamental mode 8-12GHz)
Measurement principle

- \(f_{RF} = n_{harm} f_{LO} \pm f_{IF} \)

Single \(f_{RF} \) with fixed \(f_{LO} \) can give several \(f_{IF} \)-signals

- Signal frequency must be constant to within 1-2GHz!