Analytic model for electromagnetic fields in the bubble regime in non-uniform plasma

A.A. Golovanov, I. Yu. Kostyukov, J. Thomas, A. Pukhov

1Institute of Applied Physics RAS, Nizhny Novgorod, Russia
2Institut für Theoretische Physik I, Heinrich-Heine-Universität Düsseldorf, Germany

Introduction

We consider the strongly non-linear (bubble) regime of plasma wakefield and build a model describing the electromagnetic field components distributions in the wakefield. The main results are:

1. We develop a phenomenological model of the bubble regime, assuming that there are no plasma electrons inside the bubble, while on its boundary there is a thin electron sheath which screens the bubble from plasma.
2. Using the smallness of the electron sheath width, we develop a perturbation theory which allows us to calculate simple explicit expressions for the components of the electromagnetic field both inside and outside the bubble.
3. The theory is verified by particle-in-cell (PIC) simulations.

Basic assumptions

We consider wakefield in the bubble regime excited either by an electron bunch or a laser pulse. All simulations are done for the electron driver, but the results are applicable for the laser driver.

Assumptions:
- Cylindrical geometry \(r = (r, \phi, z) \).
- Axial symmetry (no dependence on \(\phi \)).
- Radially non-uniform plasma \(n(r) = n(r) \).
- Ions are immobile.

Electron density (blue) in a bubble in 3D particle-in-cell (PIC) simulations. The electron bunch pushes plasma electrons, leading to the formation of the bubble.

Potentials and fields

We use quasi-static approximation, in which fields propagate with the velocity of light, and the structure of the fields does not change

\[
\mathbf{E}(r, z, t) = \mathbf{E}(r, \xi).
\]

EM fields are described by the vector potential \(A_\xi, A_r \) and the wakefield potential \(\Psi = -A_r \).

The solution to the Maxwell’s equations is written as

\[
\begin{align*}
\mathbf{E}_e &= \frac{\partial \Psi}{\partial \xi} + B_\phi, \\
\mathbf{B}_e &= -\frac{\partial \Psi}{\partial r} + B_\phi,
\end{align*}
\]

\(\xi = t - z \).

The answer is very simple

\[
\mathbf{E}_e(\xi, r) = \begin{cases} \mathbf{S}(\xi) \mathbf{r} / r, & r < r_b(\xi) \\ \mathbf{S}(\xi) \mathbf{r} / r, & r \geq r_b(\xi) \end{cases}
\]

where \(\mathbf{S}(\xi) = \int_b^\infty \rho(r) \mathbf{r} \, dr \). A similar procedure is applied to all other field components.

Results

The comparison shows that the model correctly describes the fields both inside and outside the bubble.

Boundary of the bubble

The width of the electron sheath is small compared to the size of the bubble.

\[
\Delta, \Delta_s \ll \lambda_b.
\]

Using this assumption, we get an equation for the boundary of the bubble.

\[
\lambda_b(\xi) = -\int_0^{\lambda_b(\xi)} \mathbf{J}_b(\xi, r) \mathbf{r}' \, dr'.
\]

Function \(\lambda_b(\xi) \) can be analytically calculated.

Perturbation theory

At this point, we can analytically calculate all fields distributions. However, the results can be significantly simplified if we use the smallness of the electron sheath thickness \(\Delta_s \ll \lambda_b(\xi) \).

We begin with the expression for \(E_e \).

\[
E_e(\xi, r) = \frac{\mathbf{S}(\xi) \mathbf{r} / r}{r < r_b(\xi)}, \\
E_e(\xi, r) = \frac{\mathbf{S}(\xi) \mathbf{r} / r}{r \geq r_b(\xi)}.
\]

The answer is very simple

\[
E_e(\xi, r) = \begin{cases} \mathbf{S}(\xi) \mathbf{r} / r, & r < r_b(\xi) \\ \mathbf{S}(\xi) \mathbf{r} / r, & r \geq r_b(\xi) \end{cases}
\]

We perform simulations with an electron driver using the 3D PIC code Smilei and compare the results to our model.