Recent results from the STAR experiment on Vector Meson production in ultra peripheral AuAu collisions at RHIC.

Leszek Adamczyk

On behalf of STAR Collaboration

September 7, 2016

RHIC

AA: Au+Au, Cu+Cu, Cu+Au, d+Au, U+U up to $\sqrt{s_{NN}}=200~{\rm GeV}$ new results: Au + Au \rightarrow (Au)* + (Au)* + X; X: direct $\pi\pi, \rho^0, \omega, \rho_3(?), J/\Psi$ polarized proton-proton: up to $\sqrt{s}=510~{\rm GeV}$ plans: $\rho+\rho\rightarrow \rho+\rho+J/\Psi; \quad \rho+{\rm Au}\rightarrow \rho+({\rm Au})^*+J/\Psi$

Rafał Sikora talk at this conference:

$$p + p \rightarrow p + p + X$$
; $X : \pi\pi$, KK

The STAR detector

 $\text{new results: AuAu} \to (\text{Au})^{\star}(\text{Au})^{\star}X, \quad X = \text{direct } \pi\pi, \rho^0, \omega, J/\Psi.$

- high resolution tracking with TPC: $-1 < \eta < 1$
- particle identification TPC: dE/dx
- time-of-flight (TOF) system: triggering on low multiplicity events and selection in-time tracks
- \bullet possible rapidity gap: BBC veto, 2.1 $< \eta < 5.2$
- tagging nucleon excitation: neutrons in ZDC

plans:
$$p + p \rightarrow p + p + J/\Psi$$
; $p + Au \rightarrow p + (Au)^* + J/\Psi$

- Barrel EM Calorimeter: triggering $J/\Psi \rightarrow ee$
- Roman Pot system: trigger/measure scattered proton (see Rafał Sikora/Łukasz Fulek talks at this conference)

Photoproduction in Ultra-peripheral collisions

- relativistic heavy ions are an intense source of photon fluxes
- virtuality $Q^2 < (\hbar/R_A)^2 < 10^{-3} \text{ GeV}^2$
- 7.6 GeV $<\sqrt{s_{\gamma N}}<$ 20.6 GeV for Au Au with $\sqrt{s_{NN}}=$ 200 GeV
- typically Vector Meson (VM) production
- production can occur:
 - coherently off whole nucleus (large size, low ρ_T)
 - incoherently off individual nucleons (small size, high ρ_T)

Photoproduction of low-multiplicity states in UPC

- photon emitted by one ion fluctuates into a $q\bar{q}$ state which then interacts with other ion by the Pomeron exchange
- coherent exclusive production (a) hard to trigger at STAR
- coherent with nuclear excitation (b) triggered by tagging fast forward neutrons coming from de-excitation of $(Au)^*$ ($\approx 10\%$ of the total cross section)
- use theoretically well known 1n1n events for overall cross-section normalization

Pion pair selection

- at least 14 hits in TPC (out of 45 normally possible)
- associated with a hit in the time-of-flight system (eliminates out-of-time tracks)
- |track pseudrapidity|< 1
- specific dE/dx within 3σ of pion expectation

RHIC Run2010

- like sign pairs are a background measure, and are subtracted.
- efficiency corrections done with STARlight Monte Carlo events embedded in zero-bias data.

STARlight: PRC C60, 014903 (1999) & PRL 84, 2330 (2000)

Fit to pion pair invariant mass spectrum

- 384,000 reconstructed pairs with p_T < 100 MeV/c
- 3 indistinguishable sources: ρ^0, ω^0 (small B.R.), direct $\pi\pi\to {\rm add}$ amplitudes in fit:
- Fit parameters:
 - ρ^0, ω mass and width
 - ρ^0, ω and direct $\pi\pi$ amplitudes, and ω phase
 - quadratic polynomial for remaining backgrounds
- solid black: data points & fit solid blue: ρ^0 dotted blue: ρ^0 - $\pi\pi$ interference solid red: ω dotted red: $\omega \rho^0$ interference dotted black: direct $\pi\pi$

RHIC Run2010

pion pair invariant mass [GeV/c2

$$\chi^2/DOF = 314/297$$

- ullet ho^0 mass and width and ω mass consistent with PDG
- \bullet $\,\omega$ width higher (16 \pm 2 vs. 8.5 MeV), likely because of detector resolution
- non zero ω phase ($\phi_{\omega}=1.73\pm0.13~{\rm rad}$)

$ho^{f 0}$: direct $\pi\pi$ and $ho^{f 0}$: ω amplitudes ratios

RHIC Run2010

- STAR 2008: PRC 77, 034910 (2008)
- ALICE: JHEP 1509, 095 (2015)
- DESY-MIT:
 PRL 27, 888 (1971)
 fixed-target experiment, with
 5-7 GeV photons (low enough to be sensitive also to photon-meson fusion)

- ρ^0 : $\pi\pi$ ratio is consistent with previous STAR and ALICE results and also consistent with HERA results
- ho^0 : ω ratio is consistent with measured $\gamma\pi\to\omega p$ cross-section, Glauber calculation (via STARlight) and measured (per PDG) Br($\omega\to\pi^+\pi^-$)= 0.015 \pm 0.001 and with DESY fixed-target data
- ω phase \neq 0; is consistent with previous DESY results

ho^{0} rapidity

- rapidity distribution is in good agreement with STARlight
- 1n,1n cross-section is consistent with STARlight 10% below prediction (< 1 σ_{syst.})
- Xn,Xn cross-section is scaled from 1n,1n using STARlight
 - The distribution of the number of neutrons is not well known.

$\rho^0 d\sigma/dt$; RHIC Run2010

Coherent + incoherent

- fit incoherent part in |t| > 0.2GeV² region to a dipole form factor $F(t) = A/(Q_0^2 + |t|^2)$ with $Q_0^2 = 0.099$ GeV²
- find coherent spectrum by subtracting incoherent

Coherent production

- multiple diffraction dips visible expected as nucleus approaches 'black disk'
- downturn for $|t| < 10^{-3} \text{ GeV}^2$ due to interference between the two production targets (nuclei)

ho^0 : targets spatial distribution inside Au nucleus

$$F(b) \propto \frac{1}{2\pi} \int_0^\infty dp_T p_T J_0(bp_T) \, \sqrt{\frac{d\sigma}{dt}}$$

RHIC Run2010

- Fourier 2-D transform of the d²σ/dydt relates to the targets spatial distribution in the Au nucleus integrated over z
- blue band shows effect of varying |t|_{max} from 0.06 to 0.05
 - 0.09 GeV²
- variation at small |b| may be due to finite t range
- negative wings at large |b| are likely from interference between the two production nuclei
- FWHM=2*(6.17 \pm 0.12 fm)

pion pairs: high mass region

RHIC Run2010, Run2011

- like-sign background subtracted
- fit to exponential tail of ρ^0 , flat remaining background and Gaussian peak for signal
- $M_X = 1653 \pm 10$ MeV, $\Gamma_X = 164 \pm 15$ MeV (stat. only)
- $N(X) = 1034 \pm 71$: 15 σ significance (stat. only)

Consistent with $\rho_3(1690)$:

- M = 1690 and $\Gamma = 161$ MeV
- Br($\rho_3 \to \pi^+ \pi^-$) = 23.6 ± 1.3 %
- N(ρ_3)/N(ρ^0) 1/750 consistent with Br($\rho_3 \to \pi^+\pi^-$) and previous $\gamma p \to \rho_3 \to \eta \pi^+\pi^-$ data from OMEGA photon collaboration: Z Phys. C30, 531 (1986)

Photoproduction of J/Ψ in UPC

- heavy vector meson production probe short distance scales
- scattering may be described via 2-gluon exchange
- sensitive to gluon distribution at $x \approx 0.01$ and $Q^2 \approx M_{L/W}^2$

RHIC Run2010, Run2011

- two TPC tracks matched with a hit in TOF
- pair transverse momentum < 0.15 GeV
- pair rapidity 0.05 < |y| < 1
- like-sign and side-bands background subtracted
- efficiency corrected

J/Ψ cross sections vs. rapidity

RHIC Run2010, Run2011

- cross section falls slowly for 0<y<1, consistent with Starlight
- cross section factor 2.5 lower than STARlight + RELDIS expectation

- physics distribution dσ/dy symmetric under y → -y (symmetric beams)
- events y<0 binned |y|>0, total counts halved

RELDIS: PRC C64, 024903 (2001) & PPN 42, 215 (2011)

J/Ψ cross sections vs. p_T

RHIC Run2010, Run2011

- cross section for $p_T > 0.5$ GeV/c consistent with zero
- ullet STARlight coherent normalized to data at $p_T < 0.15$ GeV/c dominant coherent component
- significant incoherent component at $p_T > 0.15$ GeV/c 30% of total signal.

Outlook: J/Ψ in UPC of AuAu

- RHIC Run2014 data processed soon:
 - new EM calor. trigger for $J/\Psi \to e^+e^-,~3.5$ larger sample
- Current RHIC Run2016:
 - EM trigger quiet, drop neutron requirement
 - factor of 10 larger cross section
 - factor of 10 increase in total luminosity, but lost $J/\Psi \to \mu^+\mu^-$ factor 30-50 larger data sample coming
- Above data enable:
 - precise cross section measurement/comparison with models
 - measurement with/without Coulomb dissociation
 - finer study of p_T distribution: coherent/incoherent, diffractive peaks?

Outlook: J/Ψ in UPC of polarized protons pp and pAu

- J/Ψ photoproduction on polarized protons:
 - Measurement of J/Ψ azimuthal angle w.r.t. proton ϕ
 - Measure J/Ψ transverse asymmetry A

$$\frac{d\sigma}{d\phi} \approx (1 + A\cos(\phi))$$

- Transverse asymmetry A calculable with Generalized Parton Distribution and sensitive to gluon orbital angular momentum
- STAR has Roman Pot system: tag/measure scattered proton

Plans:

- RHIC Run2017:
 - pp collisions with $\sqrt(s) = 500$ GeV, Luminosity = 400 pb⁻¹
 - expect 11 k $J/\Psi \rightarrow e^+e^-$ with hit in Roman Pot system
- RHIC Run202?:
 - consider pAu collisions with $\sqrt(s) = 200$ GeV, Luminosity = 1.75 pb⁻¹
 - expect 13 k $J/\Psi \rightarrow e^+e^-$ with hit in Roman Pot system (p-target)
 - expect 5 k $J/\Psi \rightarrow e^+e^-$ (Au-target)

Summary and outlook

$$AuAu \rightarrow (Au)^*(Au)^*X$$
, $X = \text{direct } \pi^+\pi^-, \rho, \omega$

- high-statistics study of photoproduced $\pi^+\pi^-$ in ultra-peripheral collisions.
 - we observe the ρ^0 , direct $\pi\pi$ and ω photoproduction.
 - The ω is observed through its interference with the ρ^0 .
 - The ω amplitude is consistent with the measured ω photoproduction cross-section and branching ratio to $\pi^+\pi^-$.
 - ullet The ω phase angle is non-zero, and consistent with previous studies.
- We see 2 diffraction minima in $d\sigma/dt$ for ρ^0 photoproduction
- We observe an excited state with a mass of 1653 MeV and width of 164 MeV. The closest match in the particle data book is the ρ_3 (1690). The cross-section is consistent with a previous photoproduction measurement

$AuAu \rightarrow (Au)^*(Au)^*J/\Psi$

- Clear UPC J/Ψ signal
- Cross section 2.5 lower than Starlight/RELDIS expectation
- Rapidity distribution flat as expected
- Dominant coherent (low p_T) component, plus 30% incoherent
- Factor 30-50 larger data sample coming

J/Ψ with polarized protons

- Large sample of $p + p \rightarrow p + p + J/\Psi$ expected in 2017
- Considered for 202?: large sample $p + Au \rightarrow p + (Au)^* + J/\Psi$
- Through transverse asymmetry access to GPD sensitive to gluon orbital angular momentum.

