CROSSROADS: SOLAR MODELS AND PARTICLE PHYSICS

ALDO SERENELLI (ICE/CSIC-IEEC)

Part I

* Standard solar models and the abundance problem

what is helioseismology and solar neutrinos really tell us

Part II

* A generalized approach to solar models (with dark energy channels) revisiting solar limits for axion-photon coupling and hidden photons

Part III

* Asymmetric dark matter in the Sun with q and $v_{\mbox{\scriptsize rel}}$ dependent interactions

* A non-standard look at the solar abundance problem evidence for ADM in the Sun?

Standard Solar Models

SSM assumes

initially homogeneous – well mixed by convection constant mass evolution – 1 M_{\odot} evolve up to solar system age 4.57 Gyr

Standard Solar Models

SSM assumes

initially homogeneous – well mixed by convection constant mass evolution – $1 M_{\odot}$ evolve up to solar system age 4.57 Gyr

3 present-day constraints to match <--> 3 adjustable quantities

Solar radius -- > convection parameter Solar (photon) luminosity -- > initial He abundance Metal to hydrogen surface abundance (Z/X) -- > <u>initial metallicity</u> (metals = all elements heavier than He)

Standard Solar Models

SSM assumes

initially homogeneous – well mixed by convection constant mass evolution – $1 M_{\odot}$ evolve up to solar system age 4.57 Gyr

3 present-day constraints to match <--> 3 adjustable quantities

Solar radius -- > convection parameter Solar (photon) luminosity -- > initial He abundance Metal to hydrogen surface abundance (Z/X) -- > <u>initial metallicity</u> (metals = all elements heavier than He)

What observables to test models?

Helioseismology: sound speed, surface helium, depth convective zone, etc. Solar neutrinos

Helioseismology

Helioseismology

acoustic standing waves (p-modes) typical period 5 minutes (~ 3 mHz) amplitudes ~ few cm/s in radial velocity ~ parts per million in brightness

Helioseismology

Helioseismology

Inversions used to derive sound speed and density profiles

$$\frac{\delta\omega_i}{\omega_i} = \int K^i_{c^2,\rho}(r) \frac{\delta c^2}{c^2}(r) dr + \int K^i_{\rho,c^2}(r) \frac{\delta\rho}{\rho}(r) dr + F_{surf}(\omega_i)$$

Helioseismology

Inversions used to derive sound speed and density profiles

$$\frac{\delta\omega_i}{\omega_i} = \int K^i_{c^2,\rho}(r) \frac{\delta c^2}{c^2}(r) dr + \int K^i_{\rho,c^2}(r) \frac{\delta\rho}{\rho}(r) dr + F_{surf}(\omega_i)$$

Low degree modes; I=0, 1, 2, 3 – frequency separation ratios (solar core)

$$r_{02} = \frac{\nu_{n,0} - \nu_{n-1,2}}{\nu_{n,1} - \nu_{n-1,1}}$$

$$r_{13} = \frac{\nu_{n,1} - \nu_{n-1,3}}{\nu_{n+1,0} - \nu_{n,0}}$$

$$\propto \int_{0}^{R} \frac{dc}{dr} \frac{dr}{r}$$

Helioseismology

Inversions used to derive sound speed and density profiles

$$\frac{\delta\omega_i}{\omega_i} = \int K^i_{c^2,\rho}(r) \frac{\delta c^2}{c^2}(r) dr + \int K^i_{\rho,c^2}(r) \frac{\delta\rho}{\rho}(r) dr + F_{surf}(\omega_i)$$

Low degree modes; I=0, 1, 2, 3 – frequency separation ratios (solar core)

$$r_{02} = \frac{\nu_{n,0} - \nu_{n-1,2}}{\nu_{n,1} - \nu_{n-1,1}}$$

$$r_{13} = \frac{\nu_{n,1} - \nu_{n-1,3}}{\nu_{n+1,0} - \nu_{n,0}}$$

$$x = \int_{0}^{R} \frac{dc}{dr} \frac{dr}{r}$$

Depth of convective envelope

Envelope helium abundance

Solar Neutrinos

Solar Atmospheres & Abundances

Present day metal to hydrogen surface abundance (Z/X)

Spectroscopic analysis relies upon solar atmosphere models – 3D models of convection

Solar Atmospheres & Abundances

Fundamental differences between (old) 1D based and (new) 3D based abundances

Element	GS98	AGSS09+met
С	8.52	8.43
Ν	7.92	7.83
Ο	8.83	8.69
Ne	8.08	7.93
Mg	7.58	7.53
Si	7.56	7.51
Ar	6.40	6.40
Fe	7.50	7.45
Z/X	0.0229	0.0178

 $A(i) = log(n_i/n_H) + 12$

Differences of

CNO(Ne)~30-40%

refractories~10%

Sun has a sub-solar metallicity according to newest spectroscopic analysis

SSM: helioseismology

	GS98	AGSS09	Helios.
(Z/X_{\odot})	0.0229	0.0178	
$R_{ m CZ}/R_{\odot}$	0.712	0.723	0.713 ± 0.001
$Y_{\rm S}$	0.2429	0.2319	0.2485 ± 0.0034
$\langle \delta c/c \rangle$	0.0009	0.0037	
$\langle \delta ho / ho angle$	0.011	0.040	—

Helioseismology --> high-Z

SSM: helioseismology

SSM: helioseismology

SSM: neutrinos

Borexino (⁷Be) – SNO & SuperK (⁸B)

Dependence on core temperature

⁷Be & ⁸B consistent with any model pp and pep uncertainties too large and models too similar

SSM: neutrinos

Borexino (⁷Be) – SNO & SuperK (⁸B)

⁷Be & ⁸B consistent with any model pp and pep uncertainties too large and models too similar

Composition/radiative opacity degeneracy

* all robust helioseismic probes* pp-chain neutrinos depend

depend on T stratification i.e. energy transport not directly on composition

in solar interior T grad. scales with radiative opacity κ

degeneracy between κ and composition

atomic opacity calculations were and still are Achilles' heel in solar physics

Seismic data and neutrinos from pp-chains constrain radiative gradient / opacity profile

CNO neutrino fluxes constrain directly composition (they are unique)

Composition/radiative opacity degeneracy

Christensen Dalsgaard et al 2009

Composition/radiative opacity degeneracy

Using helioseismic data and solar neutrinos – obtain solar opacity profile

Fractional opacity difference wrt AGSS09 solar model

few % center to 20% at convective boundary

Composition/radiative opacity degeneracy

* let solar composition free – 2 parameters (volatiles / refractories)
* SSM input (~10) parameters move around central values (nucler cross sections, solar parameters, efficiency of chemical mixing, etc.)

-- > find the best possible Standard Solar Model

Composition -- > high (old) metallicity (not surprising)

Best-fit Standard Solar Model

Pulls from systematics of order 1 (1- σ) Even better than the real thing !!

composition – opacity degeneracy cannot be removed but... phenomenological description of solar structure (T, r stratification) is excellent

Revisiting solar axion-photon coupling

Solar limits on axion-photon coupling

 $\mathcal{L}_{a\gamma} = g_{a\gamma} B \cdot E a$ $g_{a\gamma} = g_{10} \, 10^{-10} \, \mathrm{GeV}^{-1}$

Schlattl et al. 1999 – g_{10} < 10 Sound speed at R = 0.1 R $_{\odot}$ – equivalent to L $_a$ < 0.2 L $_{\odot}$

Gondolo & Raffelt 2009 – $g_{10} < 7$ ⁸B flux < 1.5 ⁸B_{SSM} (3- σ) – equivalent to L_a< 0.1 L_{\odot}

Maeda & Shibahashi 2013 – $g_{10} < 2.5$ ⁸B flux constrained by sound speed (1- σ) seismic (not evolutionary models – neglect basic physics)

Vinyoles et al. $2015 - g10 < 4(3-\sigma)$

seismic + neutrino data extend the method used to construct best-fit SSM

Revisiting solar axion-photon coupling

$$\epsilon_{a\gamma} \propto g_{a\gamma}^2 T^7 F(\kappa^2) \sim g_{a\gamma}^2 T^6$$

No explicit composition dependence

Revisiting solar axion-photon coupling

Variations in sound speed without variations in composition and pulls

Revisiting solar axion-photon coupling

Variations in other quantities without variations in composition and pulls

Changes due to axions and "zero point" of SSM to be accounted for by composition and systematics (pulls)

Revisiting solar axion-photon coupling

Full solution: composition is free and pulls computed to minimize χ^2 for fixed g₁₀

Revisiting solar axion-photon coupling

Revisiting solar axion-photon coupling

Hidden photons

Weak T-dependence -- > broad production region More relevant as T decreases (nucl. energy higher T-dependence)

Hidden photons

Variations in sound speed over whole radiative interior

Vinyoles et al. 2015

Hidden photons

Our approach: solar model absorbs these variations without influencing boundaries derived for particle properties – e.g. increase metal abundances: freely or constrained by spectroscopy

Limits derived are based on forcing solar models (+ dark channel) to fit solar data as best as possible -- > limits then derived from irreducible residuals

Hidden photons

 χ m < 2 @ 3- σ C.L. -- improves previous limit by factor 2

Comments on Solar Constraints

Effective limit in dark channels $L_{hp} < 2\% L_{\odot} - L_{a \gamma} < 3\% L_{\odot}$

using pp ν flux offers a model independent test – but needs measurement ~ 1%

Comments on Solar Constraints

Effective limit in dark channels $L_{hp} < 2\% L_{\odot} - L_{a \gamma} < 3\% L_{\odot}$ $\frac{\Phi(^{8}\mathrm{B})}{\Phi_{\mathrm{SSM}}(^{8}\mathrm{B})} = \left(\frac{L_{x} + L_{\odot}}{L_{\odot}}\right)^{\alpha}$

Relations are not universal depend on the type of particle

 α = 4.4 (ax) α = 5.7 (hp)

Current Limits

Solar Models and Asymmetric Dark Matter

DM-nucleon scattering allows DM collisions with nuclei in the Sun -- > gravitational capture and settling the to solar core -- > nuclear scattering inside the Sun -- > additional energy transport -- > modified solar structure

Energy transport -- > lower central temperatures -- > lower ⁸B flux (solar neutrino problem, Press & Spergel, Faulkner & Gilliland Griest & Seckel, etc.)

Can DM help with solar abundance problem? e.g. Taoso et al., Lopes et al. and other

Solar Models and Asymmetric Dark Matter

DM-nucleon scattering allows DM collisions with nuclei in the Sun

- -- > gravitational capture and settling the to solar core
 - -- > nuclear scattering inside the Sun
 - -- > additional energy transport
 - -- > modified solar structure
 - -- > 1. observables: different core temperature
 - solar neutrino rates
 - -- > 2. observables: helioseismology
 - sound speed
 - oscillation frequencies
 - convective zone depth
 - surface helium fraction

Direct detection: high velocity tail of DM halo (higher recoil energy) Solar capture: low velocity tail of DM halo (easier to capture gravitationally)

Solar Models and Asymmetric Dark Matter

DM-nucleon interaction with q or v_{rel} dependences

$$\sigma = \sigma_0 \left(\frac{q}{q_0}\right)^{2n} \qquad \sigma = \sigma_0 \left(\frac{v_{\rm rel}}{v_0}\right)^{2n}$$

Energy Transport by ADM

Total number of DM particles

$$\frac{dN_{\chi}}{dt} = C_{\odot}(t) - A(t) - E(t) \longrightarrow C(t) = \text{capture rate}$$

$$A(t) = \text{annihilation rate} = 0 \text{ (fully ADM)}$$

$$E(t) = \text{evaporation rate} = 0 \text{ (ok for } M_{\chi} > 4\text{Gev)}$$

Energy Transport by ADM

Total number of DM particles

$$\frac{dN_{\chi}}{dt} = C_{\odot}(t) - A(t) - E(t) \longrightarrow C(t) = \text{capture rate}$$

$$A(t) = \text{annihilation rate} = 0 \text{ (fully ADM)}$$

$$E(t) = \text{evaporation rate} = 0 \text{ (ok for } M_{\chi} > 4\text{Gev)}$$

DM number density distribution (LTE)

$$n_{\chi,\text{LTE}}(r) = n_{\chi,\text{LTE}}(0) \left[\frac{T(r)}{T(0)}\right]^{3/2} \exp\left[-\int_0^r dr' \,\frac{k_{\text{B}}\alpha(r')\frac{dT(r')}{dr'} + m_{\chi}\frac{d\phi(r')}{dr'}}{k_{\text{B}}T(r')}\right]$$

DM conductive luminosity

$$L_{\chi,\text{LTE}}(r) = 4\pi r^2 \zeta^{2n}(r) \kappa(r) n_{\chi,\text{LTE}}(r) l_{\chi}(r) \left[\frac{k_{\text{B}}T(r)}{m_{\chi}}\right]^{1/2} k_{\text{B}} \frac{\mathrm{d}T(r)}{\mathrm{d}r}.$$

Energy injection rate

$$\epsilon_{\chi,\text{LTE}}(r) = \frac{1}{4\pi r^2 \rho(r)} \frac{\mathrm{d}L_{\chi,\text{LTE}}(r)}{\mathrm{d}r} \qquad \qquad \int_0^{R_\odot} L_\chi dr = 0$$

Energy Transport by ADM

Total number of DM particles

$$\frac{dN_{\chi}}{dt} = C_{\odot}(t) - A(t) - E(t)$$

Two limiting behaviors: LTE & Isothermal Intermediate: Knudsen regime $I_{\chi} \sim r_{\chi} \rightarrow Boltzmann eq. + corrections to LTE expressions$

Energy Transport by ADM

Extra energy transport -- > lower core temperature

Capture & Transport

Enhancement/suppresion factors due to q / v dependences

 $\sigma_0 = 10^{-35} \text{ cm}^2$ Solid = SI, Dashed = SD

Global effect of DM from combining both figures

Impact on Observables: SI – SD – constant

Observables: ⁷Be & ⁸B neutrinos + convective radius + surface helium frequency separation ratios r_{02} , r_{13} (solar core)

Impact on Observables: $SI - SD - v^{-2}$, q^{-2}

Impact on Observables: $SI - SD - v^2$, q^2

Notice low χ^2

Impact on Observables: $SI - SD - v^4$, q^4

Best Model – q^2

q² coupling q₀= 40 MeV m_{χ} = 3 GeV σ_0 = 10⁻³⁷ cm²

Sound speed for best q² SI and SD models

Best Model – q^2

Frequency separation ratios – zooming into the solar core

Changes to Solar Structure

Best Model q²

	SSM	SD	SI	q^2 SI	Obs. ^a	$\sigma_{ m obs}$	$\sigma_{ m model}$
$\phi_{ u}^{8_{ m B}}$ b	4.95	4.39	4.58	3.78	5.00	3%	14%
$\phi_ u^{^7{ m Be}\ {f c}}$	4.71	4.58	4.62	4.29	4.82	5%	7%
$R_{ m CZ}/R_{\odot}$	0.722	0.721	0.721	0.718	0.713	0.001	0.004
$Y_{ m s}$	0.2356	0.2351	0.2353	0.2327	0.2485	0.0034	0.0035
$\chi^2_{^{8}\mathrm{B}}$	0.0	0.9	0.9	4.9			
$\chi^2_{^7\mathrm{Be}}$	0.1	0.4	0.4	1.9			
$\chi^2_{R_{ m CZ}}$	4.8	3.8	3.8	1.5			
$\chi^2_{Y_{ m s}}$	7.0	7.5	7.3	10.5			
$\chi^2_{r_{02}}$	156.6	95.3	105.2	5.6			
$\chi^2_{r_{13}}$	119.3	50.7	67.2	3.1	_		
$\chi^2_{ m total}$	287.8	158.5	185.2	27.5			
p	$< 10^{-10}$	$< 10^{-10}$	$< 10^{-10}$	0.845			

(very) non-standard solution

but goes a long way solving the solar abundance problem

Experimental limits

Chang et al. 2010

SUMMARY

- * Seismic and pp-chain ν s not sensitive to detail composition
- * Solar abundance problem circumvented in particle studies by letting composition free and input parameters move in constrained way
- * Combining helioseismic and solar vs data
- * Solar limit on axion-photon coupling used as test of method
- * Limit on hidden photon kinetic coupling revisited x2 lower than previous
- * Momentum exchange q² ADM models -- > agreement in solar data and models (σ_0 =10⁻³⁷ cm², m_{χ} = 3 GeV)
- * Preferred mass and cross-section range not excluded by direct experiment
- * Caveat: evaporation not accounted for (will do)!!!