Gruppo III PAVIA

≻Esperimenti CSN-IIII a Pavia:

In corso

```
AEGIS → A.Fontana

MAMBO → P.Pedroni

FAMU → A- Menegolli

PANDA.DTZ → G.Boca (in chiusura)
```

Proposta apertura nuova sigla locale

```
ALICE.DTZ (!) → G. Bonomi
```

```
Resp. Nazionale: R. Nania – BA misure ad LHC – quark-gluon plasma e tanto altro ....
```

	Posizione	Qualifica	AEGIS	ALICE	FAMU	MAMBO	PANDA	
Boca Gianluigi	Inc. Ric.	Ricercatore		30			20	%
Bonomi Germano	Associato	Ricercatore	50	50				
Braghieri Alessandro	Dipendente	Ricercatore				30		
Costanza Susanna	Assegn.	Assegnista		70		30		
<u>De Bari Antonio</u>	Inc. Ric.	Ricercatore			40			
<u>De Vecchi Carlo</u>	Dipendente	Tecnologo			50			
Donzella Antonietta	Associato	Tecnico Cat. D	50					
Fontana Andrea	Dipendente	Ricercatore	50					
Menegolli Alessandro	Inc. Ric.	Ricercatore			40			
Montagna Paolo	Inc. Ric.	Ricercatore				30		
Pagano Davide			30	70				
<u>Pedroni Paolo</u>	Dipendente	Primo Ric.				100		
Rossella Massimo	Dipendente	Tecnologo			20			
Tomaselli Alessandra	Associato	Ricercatore			30			
Rotondi Alberto	Inc. Ric.	Prof. Ordinario	30	50			20	
Zenoni Aldo	Associato	Prof. Ordinario		40				
Zurlo Nicola	Inc. Ric.	Ricercatore	100					
FTE TOTALI: 10.3			3,1	3.1	1,8	1,9) (0,4

Gruppo III - Brescia

	Posizione	Qualifica	ASACUSA
<u>Artoni Maurizio</u>	Associato	Prof. Associato	30
Bianconi Andrea	Inc. Ric.	Prof. Associato	70
<u>Leali Marco</u>	Associato	Tecnico cat.B	100
Venturelli Luca	Inc.Ric.	Prof. Associato	100
Mascagna Valerio	Assegnista	Assegnista	100
FTE TOTALI :			4.0
Nuove Proposte			
<u>Ferrari Marco</u>	Associato	Prof. Associato	50
<u>Ferrari Vittorio</u>	Associato	Prof. Associato	50
<u>Baù Marco</u>	Assegnista	Assegnista	50
<u>Solazzi Luigi</u>	Associato	Ricercatore	50

M. Baù, M. Ferrari, V. Ferrari, Low-Noise Charge Preamplifier for Electrostatic Beam Position Monitoring Sensor at ELENA

IPAC 2015

ELENA ORBIT AND SCHOTTKY MEASUREMENT SYSTEM

L. Søby, M. E. Angoletta, R. Marco-Hernandez, J. Molendijk, F. Pedersen, J. S. Quesada, CERN, Geneva, Switzerland; M. Bau, M. Ferrari, V. Ferrari, Brescia University, Italy

Abstract

A new Extra Low ENergy Antiproton ring (ELENA) is under construction at CERN to further decelerate the antiprotons from the existing Antiproton Decelerator (AD) to an energy of just 100 keV. This contribution will describe the beam position system foreseen for ELENA and how it can be adapted for Schottky measurements. The orbit system being developed is based on electrostatic shoebox beam position monitors fitted with Digital Down Converters (DDC). The main requirement is to measure complete orbits every 20ms with a resolution of 0.1mm for intensities in the range of 1-3E7 charges. The pick-up signals will, after amplification with a low noise charge amplifier, be down-mixed to baseband for position computation. In order to provide the longitudinal Schottky diagnostics of un-bunched beams, the 20 BPM sum signals will, after time of flight corrections, be added digitally to give an expected S/N increase of 13dB compared to using a single electrostatic pick-up.

INTRODUCTION

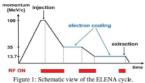

The Extra Low ENergy Antiproton ELENA ring [1] is a new synchrotron with a circumference of 30.4 m that will be commissioned at CERN in 2016. Table 1 provides a summary of ELENA's main parameters, while Fig. 1 gives a schematic view of the ELENA deceleration cycle which is expected to last some 20 seconds.

Table 1: ELENA Ring Main Parameters

ruste 1. Extra of temp status status etc.			
Parameter	Injection	Extraction	
Momentum, MeV/c	100	13.7	
Kinetic Energy, MeV	5.3	0.1	
Revolution frequency, MHz	1.06	0.145	
Expected number of particles	3·10 ⁷	1.0·10 ⁷	
Number of extracted bunches	4 (operationally)		
Extracted bunches length, m/ns	1.3/300		

The ELENA orbit measurement system will be based on 20 circular, electrostatic Beam Position Monitors (BPMs) made out of stainkss steel and mounted inside quadrupoles and dipoles. After amplification of the signals by low noise amplifiers located very near to the BPMs, the difference and sum signals will be transported by -50m cables to the rack where they will be digitized and processed.

In a second phase it is foreseen to use the same BPM sum signals for longitudinal Schottky measurements of un-bunched beams and intensity measurements for bunched beams.

PICK-UP DESIGN

The proposed design is based on a stainless steel, 100 mm diameter vacuum tank containing two pairs of diagonally cut stainless steel electrodes, one for horizontal and one for vertical measurement. As can be seen in Fig. 2, no separate sum electrode is foreseen, with the sum signal generated by the addition of the electrode signals in the front-end amplifiers. Table 2 summarises the main parameters for the BPM system.

Figure 2: Cross section view of the ELENA Pick-up.

Table 2: Pick-up and Orbit Parameters

Parameter	Value
Resolution, mm	0.1
Accuracy, mm	0.3 - 0.5
Time resolution, ms	20
Electrode inner diameter, mm	66
Electrode length, mm	120
Electrode gap, mm	10
Electrode capacitance, pF	15
Bake out temperature, °C	250
Vacuum, Torr	3E-12

In order to use the BPM electrodes for Schottky measurements, it was necessary to optimize the design for high bandwidth and high sensitivity. To obtain a

EUROSENSOR 2015

Topic: Physical sensors

Low-Noise Charge Preamplifier for Electrostatic

Beam Position Monitoring Sensor at the ELENA Experiment

M. Ban¹, M. Ferrari¹, V. Ferrari¹, L. Soby², R. Marco-Hernandez², F. Pedersen³

University of Brescia, Brescia, Italy
 CERN, Geneva, Switzerland

Summary

The Extra Low Ebergy Antiproton ring (ELENA) is a synchrotron under construction at CERN simed to decelerate the surjections from the activity Antiproton Decelerate (AD) to an energy of 100 keV. The orbit measurement of the beam is accomplished by 20 electrostatic Beam Position Monstoring (BPM) sensors to measure complete orbits every 20 ms with a resolution of 0.1 mm for instantise in the range of 1-3x10° charges. For the conditioning of the picking signals from the BPM a low-coine charge amplifier has been purposely designed and is under tweing The circuit must feature a benchmidth of 40 MHz and an equivalent input voltage some spectral designity of 0.4 mV/Hz for a sensor capacitance (g. of shout 26 pF. After amplification, the sum and difference signals are analogically derived and sent over 50 m cables to further blocks for diginization and processing.

Motivation and results

The proposed dasign of the electrostatic pick-up sensors is schematically represented in Fig. 1. It foresees a stainless used body containing two diagonal cut BPMs inserted into a vacuum tank, 100 mm diameter. The two BPMs allow the measurement of the position in two orthogonal planes. Fig. 2 shows schematically the measurement principle. The charged beam induces on the pick-up electrodes a charge which is measured by a pair of charge preamplifiers (CA1 and CA2). The readout signals v_i and v_i from the preamplifiers are analogically combined to derive the sum $(v_i + v_j)$ and difference $(v_i - v_j)$ signals.

The charge presamplifier circuit is shown in Fig. 3. The input stage is based on a NJEET/BJT folded cascode configuration. The two puralleled NJEET (SFS62) shows the noise voltage due to capacitance matching with the sensor, while the PNP (BFT82) allows to down-shift the DC loval with respect to a more traditional NFN configuration [1-2]. The cascode spir is driven by an active load based on the NPN BJT (BFC49W) to obtain a voltage open-loop gain of about -6000. The output emitter follower decouples from the following stage. The output from the samither follower is capacitively fed book with a precision 1-00.05 pF capacitance to the JFET injunt. An additional Seedheak loop based on the ADSH1 current Seedheak amplifier with gain 5 is adopted to implement a "cold" resistance mechanism to reduce the thermal notice of the Seedbeak resistor of 8 GR and to set the low comes frequency to the presumptifier at about 100 Hz [2]. Capacitance Ca, test the high corner frequency to 40 MHz. Modelling the signal from the BMPs with an equivalent voltage source va and considering the source capacitance comprising the cables and the pick-up electrodes C_{ij} of about 26 pF, a voltage gain v_{ij}/v_{ij} of 42.3 dB can be estimated. Fig. 4 shows a picture of the first prototype, Fig. 5 shows the simulation results of the NIFER1 and the Seedbeak resistor. In the bandwidth 100 Hz+0 MHz a notice voltage density lower than 0-4 NIVHz in obtained, therefore measured for the circuit which shows good agreement with the simulation results both for the low and high corner frequency to 40 MHz 100 Med 100 MHz 100 MHz 200 M

Word count: 547

References

 A. Pullia, R. Bassini, C. Boiano and S. Brambilla (2001): A "Cold" Discharge Mechanism for Low-Noise Fast Charge Amplifiers, IEEE Trans. Nucl. Sci., 48, 530-534.

[2] E. Gatti, P. F. Manfredi (1986): Processing the signals from solid-state detectors in elementary-particle physics, La rivista del Nuovo Cimento, 9 (1), 1-146.

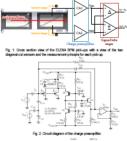
Corresponding author

Marco Ban, Dept. Information Engineering, University of Brescia, Via Branze 38, 125123 Brescia, Italy, phone: +39 030 3715896, fax: +39 030 380014, email: marco.ban@umbs.it.

GE 2015

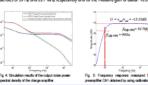
LOW-NOISE CHARGE PREAMPLIFIER FOR ELECTROSTATIC BEAM POSITION MONITORING PICK-UP AT THE ELENA EXPERIMENT

M. Baù, M. Ferrari, V. Ferrari, D. Marioli Repertment of Information Engineering, University of Bressie, Ita L. Søby, R. M. Hernandez, F. Pedersen CERN, Geneve, Switzerland



UMMARY

This work reports on the design, implementation and first experimental results about a low-noise charge preemptifier for measuring signals from electrostatic beam position monitoring pick-ups for the Estre Low Divery Adoption (ELDNA) experiment at CERN. The resolut electronic front-end determeds a challenging input-referred noise of 0.4 mil the and operating bandwidth of 40 Mil th. A first prototype of the proposed visual has been resided and so currently under text. Preliminary results show good agreement with the upposed behavior.


MOTIVATION

The Edits Low Elvery Artipoton ring (ELDN) is a synchrotron under contribution at CERN aread to describe the entirpoton from the social Adoption Decelorary (201) be an expect of 100 level. The other necessaries of the learn is accomplished by 20 decelorable. Death of the contribution of the public synchrotron be 50% to be contributed for the contribution of the public synchrotron be 50% to be contributed of the public synchrotron be 50% to be contributed for the contribution of the public synchrotron be 50% to be contributed for the contribution of 40 little and an equivalent input voltage most special decity of 0% in life to set on propositions of, of short personal proposition of the contribution of the contributio

ESULTS

Fig. 3 hours a picture of the complete crost restand, Fig. 4 shows the similation results of the odput moise power spectral density of the prempitien as well as the contribution to the noise due to the NIPETs and the feedback resistor. In the bendestit 10th He-20 Mittre a noise college density loser them 0.4 mH/Mtr is obtained, their meets the holdersign equipments. Fig. 5 reports the opposing report measured for the charge annitive CAI by using the collaboration input CALI within shous good agreement with the simulation results both for the low and high comer frequencies of 5th First and 5th Mittre regorderly and for the middleraging and adout 4.35 mL.

RETERNACE
[1] A Pullis et al. (2001) A "Cold" Discharge Mechanism for Low-Noise Fast Charge Amplifiers, IEEE Trans. Nucl. Sci., 48, 530-534.
[2] E. Gatti, P. F. Martined (1989). Processing the signals from solid-state detectors in elementary-particle physics, La rivista del Nuovo Cimento, 9 (1), 1-148.

ESPERIMENTO AEGIS

AEGIS-PV 2016: IMPEGNI E RICHIESTE

RESP. NAZ.: G. TESTERA (GE) RESP. LOC.: A. FONTANA (PV)			
PERSONALE:	% PER 2016		
RICERCATORI			
BONOMI PA	0.5		
FONTANA RI	0.5		
PAGANO AS	0.3		
ROTONDI PO	0.3		
ZURLO RU	1.0		
TECNOLOGI			
DONZELLA TC	0.5		
TOTALE FTE PV 3.1			

MISSIONI MEETINGS DI COLLABORAZIONE CEF		4.0
RIUNIONI COLLABORATORI ITALIANI TURNI DI MISURA	2.0	40.0
CONSUMO METABOLISMO		1.0
SPESE PER SERVIZI NOLEGGIO POOL CERN TOTALE	6.0	53.0

The 2015 data taking

OBIETTIVI PER IL RUN 2015

1. positroni:

trasferire i positroni nel magnete 1T produrre positronio nel magnete 1T

2. antiprotoni:

migliorare l'efficienza di trasferimento nel magnete 1T

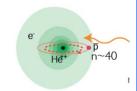
3. anti-idrogeno:

produzione di anti-idrogeno

4. Rivelazione:

rivelare e misurare i parametri di produzione dell'anti-idrogeno

(Misura di g: 2016 e 2017, prima della pausa per l'installazione di ELENA)


ESPERIMENTO ASACUSA

ASACUSA Experiments

Studies of CPT symmetry by atomic spectroscopy

- 1) laser spectroscopy of antiprotonic helium:
 - → Antiproton mass

- 2) Microwave spectroscopy of antihydrogen:
 - →Ground-state hyperfine structure

Nuclear collisions with antiprotons

total annihilation cross-section σ.

ASACUSA richieste finanziarie 2016

MISSIONII (AD 200 marter Marchia)		keuro	di cui s.j
MISSIONI (AD→28 weeks: May-Nov) Prese dati (Hbar & pbar-He) CERN 1.5 FTE x 21 weeks Prese dati (sigma_ann) CERN 4 FTE 3 weeks Installazione apparato CERN 3 FTE 1.5 weeks Riunioni di Collaborazione		31.5 12 4.5 2	23 12
	ТОТ	50	35
TRASPORTI		1	
INVENTARIABILE pompa turbo (in sostituzione)		4.5	
SPSERVIZI common fund		10	
	TOT	65.5	35

ESPERIMENTO FAMU

FAMU-PV: Attività 2016

- Realizzazione di una corona completa di rivelatori Pr:LuAG (collaborazione con gruppo spettroscopia Raman per misure ottiche e con Chimica Fisica per i depositi di riflettore) e suo utilizzo nel test run 2016 a RIKEN-RAL.
- Upgrade dei due monitor di fascio e test a RIKEN-RAL per misura del profilo del fascio.
- Disegno e realizzazione dello stadio di pre-amplificazione per i rivelatori a Germanio di INFN Milano Bicocca.
- Partecipazione ai test run 2016 (un test run a BTF/CERN e uno a RIKEN-RAL).

FAMU-PV: Preventivi 2016

Capitolo	Richiesta (Keuro)
Missioni	15.0
Consumo	9.5
Inventariabile	6.5
Apparati	1.0
Trasporti	2.0
TOTALE	34.0

FAMU-PV: Dettaglio richieste 2016

4.5 Keuro

1) Missioni:

- Test run 2016 al RIKEN-RAL:

Test run del setup sperimentale a BTF/CERN:Meeting di Collaborazione:Incontri di lavoro:	3.0 Keuro 5.5 Keuro 2.9 Keuro
2) Consumo:	
- Materiale e lavorazioni per taglio e depositi	
riflettori cristalli FAMU:	2.0 Keuro
- Materiale di consumo per stampante	
3D (odoscopio e supporti cristalli):	1.5 Keuro
- Passante da vuoto rotante per depositi riflettori:	1.0 Keuro
- Consumo elettronica Germani (circuiti	
stampati e componenti):	5.0 Keuro

ESPERIMENTO MAMBO

Manpower 2015

			FTE
PV	A.Braghieri (50%), S.Costanza (50%), P.Pedroni (100%)		2.0
CT(ME)			2.8
ISS	Numeri	provvisori!	1.0
LNF			1.2
RM2			2.2
TO			0.9
TOTALE	(15 ricercatori)		10.1

Attività 2016

> MAMI (Mainz):

- =) Continuazione runs di misura in fascio (bersagli di di protoni/deutoni (non) polarizzati)
- =) Manutenzione camere a fili

ELSA (Bonn):

- =) Continuazione runs di misura in fascio
- =) Manutenzione camere a fili

=) Costruzione set di camere di riserva (per Mainz e/o Bonn)

Richieste 2016 (in kEuro)

➤ Missioni 30,5 (Principalmente per prese dati Mainz e Bonn)

➤ Materiale consumo 2,5 (gas per camere a fili e materiale vario)

➤ Materiale Inventariabile 6,5 (Modulo HV spare per Bonn per Bonn)

4,5 (Modulo ADC spare per MAinz Mainz)

TOTALE 43 Keuro

3 mesi/uomo officina meccanica 4 mesi/uomo serv. elettronico

ESPERIMENTO PANDA

- > Tempistica di FAIR è tuttora completamente incerta
- Non si sa quanto del progetto originale verrà effettivamente realizzato
- Anche nell'ipotesi più ottimistica PANDA slitta in avanti di diversi anni

SIGLA PANDA chiude (con una piccola coda nel 2016 per terminare le attività in corso)

PANDA.DTZ: solo missioni

9 kE per partecipazione meetings di collaborazione e riunioni gruppo tracking