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Esempio: teoria g'4

D=2: super-rinormalizzabile
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5

the corresponding µ

2 is obtained by means of condition
(5).

Details of simulations for g = 4 are given in Table III.
As can be seen in Fig. 5 the two points at g = 4 and

TABLE III. g = 4 simulations with Metropolis–cluster algo-
rithm

L/a Nmeas g/µ2

128 1⇥ 105 11.2631(13)
192 1⇥ 105 11.3227(9)
256 1⇥ 105 11.3533(7)
384 1⇥ 105 11.3826(3)
512 1⇥ 105 11.3969(3)
1 11.4417(5)

g = 6, represented by squares, lie perfectly on the curve
defined by our fit function. This represent a further con-
firmation that our strategy for computing g/µ

2, passing
through the limiting procedure described above, works
as expected.
In order to better understand the behavior of f(g) for all
possible values of g we define a new parameter, ⌘:

⌘ =
g

g + 1
. (12)

It is clear that (12) is a map from g 2 [0,1) to ⌘ 2 [0, 1].
We hope in this way to obtain a smoother behavior of
f(⌘); note that the limit f(⌘ ! 0) is completely equiva-
lent to f(g ! 0). We then define the fit function
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where one of the parameters is determined by the Ising
constraint for ⌘ = 1.

As shown in Fig. 7, this choice leads us to a smoother
function. With the ⌘ parametrization we obtain:

f0 = 11.119(24), (14)

with a reduced �

2 = 0.95 and 8 d.o.f.

TABLE IV. Sample of the results for the continuum crit-
ical parameter f0 from the literature. DLCQ stands for
Discretized Light Cone Quantization, QSE diagonalization
for Quasi–Sparse Eigenvector diagonalization and DMRG for
Density Matrix Renormalization Group

Method f0 year, Ref.
DLCQ 5.52 1988, [15]
QSE diagonalization 10 2000, [16]
DMRG 9.9816(16) 2004, [17]
Monte Carlo cluster 10.80.10.05 2009, [7]
Monte Carlo SLAC derivative 10.92(13) 2012, [18]
Uniform Matrix product states 11.064(20) 2013, [19]
Renormalised Hamiltonian 11.88(56) 2015, [20]
Monte Carlo worm 11.15(6)(3) This work

FIG. 7. Final plot of f(⌘) with our results.

III. CONCLUSIONS

We decide to quote our final result as:

f0 = 11.15(6)(3). (15)

We take as central value the mean of (11) and (14). The
first error is purely statistical, and it is conservatively
taken as the biggest one between the two fits. The second
error is an estimate of the systematic error associated
with the particular functional form used to fit data.

In Table IV we summarize some of the latest results for
f0 derived with di↵erent approaches: the works [15–17,
19, 20] are based on Hamiltonian truncation (variational)
methods, while in [18] lattice theory is simulated by using
non–local SLAC derivative.

We note that our result is compatible with the last
four determinations, which come from di↵erent methods.
We only observe a discrepancy at a 3�–level with the
Monte Carlo results in [7], where a region of very small
g–values is reached. For technical reasons, which will
be hopefully overcome in the near future, we could not
reach this region, but thanks to the worm algorithm our
statistical errors are much smaller. We also note that the
result of our second fit (⌘–parametrization, see Fig. 7)
has a statistical error comparable with that of [19], and
the two results are compatible at 2�–level. Although
we were very conservative in the error estimations, we
believe that this work is a step towards a more precise
Monte Carlo determination of f0.

Our plans for the next future are to improve this work
towards the g ! 0 limit with an extended statistics.

P. Bosetti, B. De Palma, M. Guagnelli 
http://arxiv.org/abs/1506.08587
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Lattice Gauge Theory  
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Numerical Stochastic Perturbation Theory

Equazione di Langevin, tempo fittizio

Principio di quantizzazione stocastica
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Parma: F. Di Renzo, M. Brambilla
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