Misura di pygmy dipole states in nuclei esotici CDS 7.2015

A. Bracco, <u>A. Giaz</u>, A. Mentana, B. Million, F. Camera, <u>F.C.L. Crespi</u>, G. Benzoni, N. Blasi, **O. Wieland**, <u>R. Avigo</u>, S. Brambilla, S. Riboldi, A.I. Morales, <u>G. Bocchi</u>, S. Leoni, <u>S. Ceruti</u> et al.

OUTLINE

<u>Pygmy Dipole Resonance</u>

- Esperimenti a Legnaro LNL (Italia)
- Esperimenti a Darmstadt GSI (Germania)
- Esperimenti a Tokyo **RIKEN** (Giappone)
- Esperimenti a Osaka RCNP (Giappone)

Via Celoria 16 - 20133 MILANO

Misura di pygmy dipole states in nuclei esotici

What We know

- Pygmy Dipole States are strongly correlated with the size of the neutron skin (or proton skin)
- Pygmy Dipole Resonance (PDR) is a <u>collective</u> excitation of the least bound neutrons (or proton
- PDR is mostly of Electric Dipole (E1) character

What we want to know: \rightarrow **GOAL**

- -Level of collectivity ?
- -How (collective) properties change with neutron number ?
- -How isospin changes mean field ?
- -In exotic nuclei: does PDR strength exist also below neutron threshold ?
- -No High resolution/statistics measurements available
- -Present in all nuclei and mass regions ?
- -Effect of deformation ?
- -Proton Pygmy, still to proof
- -"Picture" of PDR, toroidal mode
- -from pygmy strength deduce dipole polarizability
- -Isovector and Isoscalar mode

Istituto Nazionale

Via Celoria 16 - 20133 MILANO

Sezione di Milano

di Fisica Nucl

E1 («dipole») strength distribution

Isovector oscillation n & p behave «opposit»

- Giant Dipole Resonance (GDR)
- Pygmy Dipole Resonance (PDR)

Istituto Nazionale di Fisica Nucleare Sezione di Milar Via Celoria 16 - 20133 MILANO

Pygmy dipole states in nuclei esotici and Nuclear ASTROPHYSICS → GOAL

Possible influence on (γ, n) und (n, γ) reaction rates in astrophysical scenarios

Sezione di Milano

The astrophysical importance of the Pygmy Resonances → GOAL

The present knowledge shows that standard strength functions curently used for the calculation of cross sections do not describe the dipole strength distribution below and above the (γ ,n) threshold correctly

Nupecc long range plan 2004-2010 "Giant resonances are of paramount importantce for nuclear astrophysics" ..."It is of particular interest to study the collective strength in shortlived nuclei..."

INPC 2013 – Nucl. Astrophysics session:

"...whole E1 strenght, below and above threshold, from comparable experiments, is urgently needed for exotic nuclei..."

PDR is measured in stable nuclei With different probes (in different Labs): -real photons

- High selectivity to dipole excitations
- Well-known excitation mechanism

ISOSCALAR part of Pygmy (n & p behave similar)

-p.α.

(p,p'); (α , α '); (¹⁷O, ¹⁷O') ... (p,p', γ); (α , α ', γ); (¹⁷O, ¹⁷O', γ) ...

But in unstable nuclei of the r-process ?

Virtual photon scattering for PDR search in n-rich nuclei

high selectivity for dipole E1 excitation

Technique used with high energy 40-80 GeV stable primary Beams. After Fragmentation and selection Impinging on thick targets (g/cm²)

Milano's pioneering PDR Experiment

PRL 102, 092502 (2009)

PHYSICAL REVIEW LETTERS

week ending 6 MARCH 2009

Search for the Pygmy Dipole Resonance in ⁶⁸Ni at 600 MeV/nucleon

O. Wieland,¹ A. Bracco,^{1,2} F. Camera,^{1,2} G. Benzoni,¹ N. Blasi,¹ S. Brambilla,¹ F. C. L. Crespi,^{1,2} S. Leoni,^{1,2} B. Million,¹ R. Nicolini,^{1,2} A. Maj,³ P. Bednarczyk,³ J. Grebosz,³ M. Kmiecik,³ W. Meczynski,³ J. Styczen,³ T. Aumann,⁴ A. Banu,⁴ T. Beck,⁴ F. Becker,⁴ L. Caceres,^{4,*} P. Doornenbal,^{4,†} H. Emling,⁴ J. Gerl,⁴ H. Geissel,⁴ M. Gorska,⁴ O. Kavatsyuk,⁴ M. Kavatsyuk,⁴ I. Kojouharov,⁴ N. Kurz,⁴ R. Lozeva,⁴ N. Saito,⁴ T. Saito,⁴ H. Schaffner,⁴ H. J. Wollersheim,³ J. Jolie,⁵ P. Reiter,⁵ N. Warr,⁵ G. deAngelis,⁶ A. Gadea,⁶ D. Napoli,⁶ S. Lenzi,^{7,8} S. Lunardi,^{7,8} D. Balabanski,^{9,10} G. LoBianco,^{9,10} C. Petrache,^{9,‡} A. Saltarelli,^{9,10} M. Castoldi,¹¹ A. Zucchiatti,¹¹ J. Walker,¹² and A. Bürger^{13,§}

¹INFN Sezione di Milano, I-20133 Milano, Italy ²Dipartimento di Fisica, Universitá di Milano, I-20133 Milano, Italy

Relativistic coulomb excitation selection

Nuclear Spectroscopy with relativistic coulomb excitation of 64 Fe up to 430 AMeV v/c=0.73 and AGATA

AGATA Gamma ray spectra

Angular Distribution Confirms E1 character

AGATA High energy spectra obtained with Add-Back ad Pulse shape analysis procedure Structures at 6-7 MeV above the background

R. Avigo 2015

Results about E1 strength

Preliminary B(E1) estimation shows similar trend with summed B(E1) obtained in other papers on stable nuclei. The well known challenge of understanding the r-process abundances requires measurements of the E1strength function especially towards the neutron-drip line. Paramount importance for nuclear astrophysical scenarios.

HECTOR⁺ & DALI2 @ RIKEN (Tokyo) CAMPAIN of 3 experiments in 2014

⁷⁰Ni measurement @ Riken

Primary Beam ²³⁸U with 82GeV total kinetic energy

Experiment at Riken laboratory to measure PDR in ⁷⁰Ni with NaI (DALI) and LaBr₃:Ce detectors

PHYSICAL REVIEW C 84, 021302(R) (2011)

Emergence of pygmy dipole resonances: Magic numbers and neutron skins

Tsunenori Inakura,¹ Takashi Nakatsukasa,^{1,2} and Kazuhiro Yabana^{2,1}

Approved by RIKEN PAC For 2016

			1.06e 0.005 F	rojectile 345 MeV/u ragment	⁷⁰ Zn ³⁰⁺ 100 pnA 52Ca ²⁰⁺	se 1	cR 90
¹ Sc	⁵² Sc	⁵³ Sc	⁵⁴ Sc	55 Sc	50 Sc	57 Sc	
	6.44e+1 0.013%	3.46e+3 4.005%	3.04e+2 2.309% _				
ⁱ⁰ Ca	⁵¹ Ca	⁵² Ca	⁵³ Ca	⁵⁴ Ca	⁵⁵ Ca	⁵⁶ Ca	
	9.1e+2 2.884%	1.2e+3 27.607%	1.44e+1 2.692%				
_{lð} K	⁵⁰ K	⁵¹ K	⁵² K	⁵³ K	⁵⁴ K	⁵⁵ K	
	3.42e+1 2.46%	1.51e+1 9.813%	5.32e-2 0.343%				
⁸ Ar	⁴⁹ Ar	⁵⁰ Ar	⁵¹ Ar	⁵² Ar	⁵³ Ar	⁵⁴ Ar	
	2.65e-1 0.613%	5.36e-2 1.37%	6.24e-5 0.019%				
⁷ CI	⁴⁸ CI	⁴⁹ CI	⁵⁰ (ISti	tuto N Fisica	Nucle	ale	

Via Celoria 16 - 20133 MILANO

1⁻ excitation with ¹⁷O at 20 MeV/u Measured at LNL with AGATA

Results for ¹²⁴Sn

Comparison with alpha and γ scattering

The **splitting of the PDR** region becomes even more evident if we integrate the strength in the discrete peaks measured in each experiment into two regions, 5–7 and 7–9 MeV

(**) J. Endres et al., Phys. Rev. Lett. 105, 212503 (2010) L. Pellegri, et al., PLB738 (2014)519

New Proposals in preparation

OSAKA: GRAF (Grand RAiden Forward beam line)

To measure γ -ray at around the target position of GR, low background condition is necessary.

→ Primary beam particles are led to wall beam dump!

Pubblicazioni recenti (PDR/GDR)

- "Study of the soft dipole modes in 140Ce via inelastic scattering of 170" M. Krzysiek et al. Phys. Scr. 89 (2014) 054016.
- "On the Road to FAIR: 1st Operation of AGATA in PreSPEC at GSI" Pietralla, et al EPJ 66 (2014)02083
- "Isospin character of low-lying pygmy dipole states in 208Pb via inelastic scattering of 170 ion" F.Crespi et al Phys. Rev. Lett. 113, 012501 Published 2 July 2014
- "Pygmy dipole resonance in 124Sn populated by inelastic scattering of 170", L.Pellegri, et al. PhysicsLettersB738(2014)519–523
- "Measurement of dynamical dipole gamma-ray emission in the N/Z-asymmetric fusion reaction 16O+116Sn at 12 MeV/nucleon", A. Giaz, et al. PHYSICAL REVIEW C90, 014609 (2014)
- "Onset of quenching of the giant dipole resonance at high excitation energies" D. Santonocito, et al. PHYSICAL REVIEW C90, 054603 (2014)
- "Search for E1 strength in 62,64Fe around the threshold" O. Wieland, et al. J. Phys.: Conf. Ser. 580 012058 (2015)
- "Giant dipole resonance built on hot rotating nuclei produced during evaporation of light particles from the 88Mo compound nucleus", M. Ciemala et al. 10.1103/PhysRevC.91.054313 (2015)

Grazie

Via Celoria 16 - 20133 MILANO

A. Bracco, <u>A. Giaz</u>, A. Mentana, B. Million, F. Camera, <u>F.C.L. Crespi</u>, G. Benzoni, N. Blasi, O. Wieland, <u>R. Avigo</u>, S. Brambilla, S. Riboldi, A.I. Morales, <u>G. Bocchi</u>, S. Leoni, <u>S. Ceruti</u>, ...

<u>Per</u>

- Esperimenti a Legnaro LNL (Italia)
- Esperimenti a Darmstadt GSI (Germania)
- Esperimenti a Tokyo RIKEN (Giappone)
- Esperimenti a Osaka RCNP (Giappone)

Particle Phonon Coupling

Proposals ongoing for 2016

GDR at finite temperature and determination of ISOSPIN MIXING measurment in ⁸⁰Zr at T=1-3MeV

- In the nuclear matter the **isospin symmetry** is broken by the presence of the coulomb interaction (*isospin mixing*).
- **GDR** γ **decay** is a tool to test the isospin symmetry in N=Z nuclei.
- From the **GDR** γ decay data we extract the degree of ISOSPIN mixing α^2 and coulomb spreading width Γ .

Isospin Mixing contributes as fundamental quantity to extract the **Vud** (matrix transition element) term of the **CKM** matrix

Sezione di Milano

Vud
$$Ft \equiv ft(1+\delta_R)(1-\delta_C)$$

Isospin mixing correction term

$$1 - \delta_C$$

Restoration of Symmetry between n and p at high temperature

S. Ceruti et al. APP B46 (2015) PhysRevC.84.041304, PRL submitted

New Proposal 2016 with Galileo@LNL

Via Celoria 16 - 20133 MILANO

Istituto Nazionale

di Fisica Nucleare

Propsal 2014/2015 ⁷⁰Ni and 2016 for ⁷²Ni →2017

POSSIBLE NOW only AT RIKEN_

