SABRE (SODIUM IODIDE WITH ACTIVE BACKGROUND REJECTION)

Davide D'Angelo

I.N.F.N. – Consiglio di Sezione 8th July 2015 Milano

DIRECT DARK MATTER DETECTION: SIGNATURES

ľ

per.⁷ If the halo density distribution is $\propto r^{-2}$, then $v_{\text{halo}} = \sqrt{3/2}v_{\odot}$. Viewed in the laboratory frame,

to th
$$15 \text{ k}$$

is a (

$$(\mathbf{v} + \mathbf{v}_{\odot} + \mathbf{v}_{E}) = \frac{\rho_{0}}{\pi^{3/2} m_{x} v_{\text{halo}}^{3}}$$
 nonr
pone

$$\times \exp[-(\mathbf{v}+\mathbf{v}_E+\mathbf{v}_\odot)^2/v_{\text{halo}}^2]$$
, (6)

$$v_E$$
 is the component of Earth's motion parallel to v_{\odot} .
Combining Eqs. (5) and (6),

pone tive ratio Tabl effec of th fract

f

DAMA/LIBRA

Located at LNGS:

- DAMA (100kg) 1996-2002 1.
- DAMA/LIBRA (250kg) Phase I: 2003-2010 2.
- DAMA/LIBRA (250kg) Phase II: 2011-... 3.

THE DAMA/LIBRA MODULATION

- 13 annual cycles (Dama/Nal + Dama/Libra)
- $\chi^2/ndf = 70.4/86$
- 9.3 σ significance
- (0.998±0.002) year period
- Phase is (144±7) days vs. Exp. DM phase 152.5 days
- Amplitude (0.0112±0.0012) cdp/kg/keV (~ 1.2% of signal)
- · Can be explained as WIMP-nucleus SI interaction with

 $M_W{\sim}10GeV/c^2$ and $\sigma_W{\sim}10^{\text{--}40}\ cm^2$

THE LOW MASS SCENARIO

Most simple standard Spin Independent Wimp-nucleon scattering Many alternatives exist: halo model, DM particle, interaction,...

- DAMA/LIBRA (DL) results (and other positive low mass results) are *"excluded"* by several other experiments.
- DL (and CoGeNT) observes DM annual modulation, while all others are counting experiments.
- No other experiments is using Nal as target material.
- **Theoretical** attempts to let DL coexist with other results: <u>NO clear conclusion</u>.
- Attempts to explain DL in terms of **background** have been made
 - ⁴⁰K
 - cosmogenic (and environmental) background
 <u>NO clear conclusion</u>
- DL has done an excellent job. Strong arguments to sustain the result. <u>NO trivial mistake</u>.

Low-mas compatibility

H. Hooper, J. Collar, J. Hall, D. McKinsey, C. Kelso, PR D 82 (2010) 123509.
C. Savage et al., JCAP 04 (2009) 010.
P.W. Graham et al., PR D 82 (2010) 063512.
D. Hooper, Phys. Dark Univ. 1 (2012) 1.

- Theoretical attempts to let DL coexist with other results: <u>NO clear conclusion</u>.
- Attempts to explain DL in terms of **background** have been made
 - ⁴⁰K
 - cosmogenic (and environmental) background
 <u>NO clear conclusion</u>
- DL has done an excellent job. Strong arguments to sustain the result. <u>NO trivial mistake</u>.

Instrumental backgrounds (⁴⁰K)

J. Pradler, B. Singh and I. Yavin, PL B 720 (2013) 399-404 R. Bernabei et al. (DAMA coll.), (2012) arXiv:1210.6199 and arXiv:1211.6346; J. Pradler and I. Yavin, (2012) arXiv:1210.7548.

- No other experiments is using Nal as target material.
- Theoretical attempts to let DL coexist with other results: <u>NO clear conclusion</u>.
- Attempts to explain DL in terms of **background** have been made
 - ⁴⁰K [∠]
 - cosmogenic (and environmental) background
 <u>NO clear conclusion</u>
- DL has done an excellent job. Strong arguments to sustain the result. <u>NO trivial mistake</u>.

Environmental backgrounds (Cosmic muons)

- J. P. Ralston, (2010) arXiv:1006.5255
- K. Blum, (2011) arXiv:1110.0857
- E. Fernandez-Martinez and R. Mahbubani, JCAP 07 (2012) 029
- S. Chang, J. Pradler and I. Yavin, PR D 85 063505 (2012)
- J. Pradler, (2012) arXiv:1205.3675
- R. Bernabei et al. (DAMA coll.), IJMP A 28 (2013) 1330022
- Attempts to explain DL in terms of **background** have been made
 - ⁴⁰K
 - cosmogenic (and environmental) background
 NO clear conclusion
- DL has done an excellent job. Strong arguments to sustain the result. <u>NO trivial mistake</u>.

- DAMA/LIBRA (DL) results (and other positive low mass results) are • "excluded" by several other experiments.
- DL (and CoGeNT) observes DM annual modulation, while all others are • counting experiments.
- ent is needed! No other experiments is using Nal as target mate ۲
- Theoretical attempts to let DL coexist • NO clear conclusion.
- Nal measur Attempts to explain F ۲

Jound have been made

⁴⁰K

a environmental) background

anclusion

nas done an excellent job. Strong arguments to sustain the result. NO trivial mistake.

SABRE KEY FEATURES

Detect Dark Matter annual modulation in Nal crystals

1. New radio-pure Nal crystals

- 1. Higher purity Nal powder than ever achieved
- 2. Further purification during crystallization
- 3. Low background methods (used in Borexino and DarkSide) in handling and processing
- 2. New low-background and high-QE photosensors

3" PMTs. Hamamatsu R11065-20 (< 10mBq of gamma from U and Th) to be developed with:

- 1. Sinthetic alumina feed-thorugh plates
- 2. SBA photo-cathode

3. Active Background rejection with liquid scintillator.

THE ⁴⁰K ISSUE

DAMA/LIBRA signal peaked at 3 keV.

Background from ⁴⁰K decay? 13 ppb K in DAMA crystals.

 40 K \rightarrow 40 Ar, ~11% branch ratio

- 3 keV K shell X-ray, Auger e⁻
- Background at ~3 keV if γ escapes

1.46MeV γ can be detected by a veto. ⁴⁰K background can be rejected.

Davide D'Angelo: SABRE

THE DAMA/LIBRA SIGNAL

ת

RADIO-PURE POWDER (USA WAY)

4-year work at Princeton University.

Purify precursors of Nal: Na₂CO₃

Element	MV laboratories	Sigma Aldrich "Astro-Grade"	DAMA powder
К	12ppb	3.5 ppb (18 ppb)	<100ppb (13 ppb in crystal)
Rb	14ppb	0.2 ppb	not reported
Th	<200ppt ~ 3.5ppt*	<1700ppt <1ppt*	20ppt
U	<100ppt <1ppt*	<500ppt <1ppt*	20ppt

* Preliminary by means of ICP-MS dilution method at PNNL

STD-purity crystal grown at RMD, high-purity in process

RADIO-PURE CRYSTAL (ITALIAN-CHINESE WAY)

In 2015 INFN Started R&D with SICCAS company in Shanghai:

- 1. Nal powder with K~1ppm; U and Th <0.5ppb. (dev. May)
 - 1. Measured with HPGe in Bicocca (E. Previtali) and with ICPMS at LNGS (S. Nisi).
 - Specs do not match -> sample from new production batch already shipped.
- 2. Nal test crystal growth Ø5cm, H12cm (exp. Aug)
- 3. Nal iterated crystal growth (exp. Oct)

Company tests indicate a x10 reduction in K is possible at every growth cycle

CRYSTALS TEST IN DARKSIDE

- Coincidence with
 neutron-veto detector
- 2-PMTs coincidence signal ORed with TPC trigger.
- Nal crystal inside water Cherenkov and active scintillator shielding
- 3" diameter x 4" length cyclindrical Nal crystal

SABRE insertion system built, under technical review by DS technical board.

Low radioactivity copper housing: U, Th < μBq/kg

DETECTOR SCHEME

- Cylinder : 1.5 m x
 1.5 m
- 2 tons LAB scintillator
- 10 8-inch PMTs
- Reflector in inner surface (>95%).
- Expected: 0.22 p.e./ keV
- Shielding: 25cm Pb
- Portable
- Minimum crystal array: ~50kg (10x5kg)

LOCATION AT LNGS

BACKGROUND SIMULATION

ALTERNATIVE EXPLANATIONS

Combined MACRO+LVD+Borexino muon flux modulation

Long standing question: can the DAMA/LIBRA results be explained in term of environmental and/or cosmogenic background?

The phase is off by ~30d

Hard to explain the only low energy nature of the signal

Hard to explain the only single-hit nature of the signal

Tens of papers written on the subject.

No clear conclusion

UNDERGROUND LABS

SABRE, A TWOFOLD EXPERIMENT

We want to perform the new measurement in *two* separate underground sites, using *twin* detectors.

Ideally the second location should be in *southern hemisphere*.

LNGS + STAWELL MINE would do the trick.

STAWELL MINE LAYOUT

Decline mine with dirt road 1.6 km maximum depth, with many caverns. Served with electricity, optical fibre, compressed air, and can be reached by car/truck.

> Chosen lab site: cavern 1km underground, (basalt density of the rock ~ 2.86 t/m³) ~3.1km w. e. similar to LNGS.

BACKGROUND MEASUREMENTS SUMMARY

	LNGS	<u>Stawell</u>
Neutron Flux (n/s/cm ²)	4 x 10 ⁻⁶	7 x 10 ⁻⁶
Gamma-rayflux <3MeV (γ/s/cm ²)	0.73	~1
Rock Hall ²³⁸ U (ppm)	6.8-0.42-0.66	0.64
Rock Hall ²³² Th (ppm)	2.2-0.06-0.06	1.63
Concrete ²³⁸ U (ppm)	1.05	<1.86 (wall) <2.18 (floor)
Concrete ²³² Th (ppm)	0.66	3.84 (wall) 3.49 (floor)
Radon Bq/m ³ (12 day accumulation)	~50	408±40 (free air) 36±5 (comp. air)
Muon Flux (µ/h/m²)	~1.2	coming soon

THE SABRE COLLABORATION

Princeton University:

Frank Calaprice, Jingke Xu, Francis Froborg, Emily Shield

Jay. Benziger (Chemical Engineering).

PNNL:

E. Hoppe, J. Orrell, C. Overman

LNGS:

Aldo Ianni, Carla Macolino, Chiara Vignoli, G. di Carlo, M. Antonello

Milano University:

Davide Angelo

Rome:

Claudia Tomei, G. Piredda, I. Dafinei, P. Mosteiro

University Melbourne, Australia:

Elisabetta Barbario, Matteo Volpi, F. Nuti.

INFN CdS 07/2015 - Milano

Davide D'Angelo: SABRE

SABRE

INFN – MILANO ACTIVITIES

- Proponiamo l'apertura della sigla SABRE per il 2016
 - 3 sezioni coinvolte: LNGS, Roma 1, Milano
 - Proposal sottomesso alla CSN2. I referee verranno assegnati asap.
 - Resp. nazionale Aldo Ianni (LNGS).
- Milano FTE: 0.6
 - Davide D'Angelo al 60% (+studenti)
 - collaboratori benvenuti
- Attivita' di Milano
 - Continuazione del R&D presso SICCAS (anche Roma 1)
 - Gia' finanziato con 35k nel 2015
 - Sviluppo PMT da 3" con Hamamatsu
 - Test prototipi di R11065 con fotocatodo SBA
 - Test di dissoluzione o-carborano in LAB (scint. liquido)

CAN WE HAVE A BETTER PMT?

Producer	Hamamatsu	Hamamatsu	Hamamatsu
Model	R12669	R11065-20	R11065-20MOD
Date	Mar-13	Sep-12	2015?
Used by	D/L phase II	DS-50	SABRE
Size	3" (70mm)	3" (64mm)	3" (64mm)
Body	Borosilicate glass	Metal	Metal
Window	Borosilicate glass	Synthetic silica	Synthetic silica
Radioactivity	~150mBq	~15mBq	~15mBq
Dynodes	10	12	12
HV	1500	1750	1750
Gain	10^6	5 10^6	5 10^6
Photocathode	SBA	LT-BA	SBA
QE at 420nm	35%	25-28%	35%
Dark Counts	~300cps	~3kcps	~300cps
Min T(C)	-30	-186	-30
Price (Euro)	3000	6500/4500	6500

HAMAMATSU R11065-20MOD

Offerta

- No R&D cost required.
- Final cost not higher then R11065-20.
- Delivery first prototype: 135d

Offerta n.:	1105679
Data preventivo:	03/04/15
Revisione n.:	2
No viforimento:	Maura Dambanati
NS. riterimento:	Mauro Bombonati
Tel.:	00390293582303
Fax:	00390293581741
E-mail:	bombonati@hamamatsu.it
Codice cliente:	HP1000650
Vs. Rif.:	DAVIDE D'ANGELO
RFQ n.:	

Dr. DAVIDE D'ANGELO INFN MILANO VIA G. CELORIA, 16 20133 MILANO (MI) ITALY

Pagina 1/1

Pos.	Codice prodotto	Quantità	Prezzo unit.	Importo netto
	Descrizione	[pcs]	EUR	EUR
1.1	R11065-20 MOD	1	5.070,00	5.070,00
	Metal Bulb PMT			
	MOD: SBA photo cathode			
	(operation at cryogenic			
	temperature is not possible			
	because of photocathode high			
	resistivity)			
	(NXK15-7137773)			

Legame cambio:

I prezzi riportati in offerta sono riferiti ad un legame cambio di 135 JPY/EUR. Eventuali variazioni della valuta intervenute alla data di fatturazione verranno addebitate/accreditate.

Validità offerta:4-mag-2015Termini di spedizione:Porto Franco Vs sede con addebito in fattura €15,49Termini di pagamento:R.D. 60 GG. D.F.Garanzia:12 IVIESITempi di consegl a:135 GG DRO

A NEUTRON DETECTOR?

The SABRE's liquid scintillator is primarily a gamma catcher.

However it could be exploited as a *neutron detector*:

study (cosmogenic and environmental) neutron background.
 Too small: requires neutron catcher.

LAB solvent is being purchased in Milano for JUNO (1 barrel).

- produced by SASOL in Augusta in Sicily.
- very good production method DETAL.
- extensive campaign of optical quality tests campaign in Perugia.
- possibility to have a small quantity for free.

B-LOADING THE LIQUID SCINTILLATOR

$${}_{0}^{1}n + {}_{5}^{10}\text{B} \rightarrow \begin{cases} {}_{3}^{7}\text{Li}(1.015 \text{ MeV}) + {}_{2}^{4}\text{He}(1.777 \text{ MeV}) & 6\% \\ {}_{3}^{7}\text{Li}(0.840 \text{ MeV}) + {}_{2}^{4}\text{He}(1.47 \text{ MeV}) + \gamma(0.478 \text{ MeV}) & 94\% \end{cases}$$

TMB - Trimethyl Borate

- 17.5% B content -> up to 50% loading
- organic liquid, extremely hazardous.

O-carborane

- 75% B content -> ~1% loading
- solid cristalline, dissolves easily, safe.

O-CARBORANE SMALL SCALE TESTS

LAB + 5g/l PPO + 25mg/l POPOP

small cell: 5cm x 2cm h

²⁰⁷Bi neutron source

1% B loading could be a

good compromise

Interesting R&D for

commercial n detectors

RICHIESTE MILANO

RICHIESTE FINANZIARIE Milano1		A A
	k€	
Missioni		
collaboration meeting a Princeton + interazione SICCAS	3	MIN
Partecipazione al commissioning test facility LNGS	1	
Meeting WG e meeting ai LNGS	1	
	5	
Consumo		
Attività relativa alla caratterizzazione di polvere ultrapura di NaI		10
Apparati		
2 PMT Hamamatsu R11065	10	
Attività presso la SICCAS per prove di crescita cristalli ultrapuri	15	
Set up R&D per scintillatore con o-carborano	5	
TOTALE	35	10

A WORLD WIDE EFFORT

Pyongyangy Seoul Incheon Histoliz KINS KE

INFN CdS 07/2015 - Milano D

Davide D'Angelo: SABRE