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Evolutionary scenario of universe

•universe began with a big bang 13.8 billion years ago

•composite of the universe (dark matter, dark energy)

WMAP



Observational cosmology

✓amplitude δT/T~ 10-5 
✓adiabatic
✓scale invariant spectrum
✓gaussian distribution 

Cosmic microwave background observations 

Universe underwent an 
accelerated expansion `inflation’
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Figure 1. The 7-year temperature (TT) power spectrum from WMAP. The third acoustic peak and the onset of the Silk damping tail
are now well measured by WMAP. The curve is the ΛCDM model best fit to the 7-year WMAP data: Ωbh

2= 0.02270, Ωch2= 0.1107,
ΩΛ= 0.738, τ= 0.086, ns= 0.969, ∆2

R
= 2.38 × 10−9, and ASZ= 0.52. The plotted errors include instrument noise, but not the small,

correlated contribution due to beam and point source subtraction uncertainty. The gray band represents cosmic variance. A complete error
treatment is incorporated in the WMAP likelihood code. The points are binned in progressively larger multipole bins with increasing l;
the bin ranges are included in the 7-year data release.

Figure 2. The high-l TT spectrum measured by WMAP, showing
the improvement with 7 years of data. The points with errors use
the full data set while the boxes show the 5-year results with the
same binning. The TT measurement is improved by >30% in the
vicinity of the third acoustic peak (at l ≈ 800), while the 2 bins
from l = 1000–1200 are new with the 7-year data analysis.

mask. (Most of the cosmological parameters reported
in this paper were fit using a preliminary source correc-
tion of 103Aps = 11 ± 1 µK2 sr. We have checked that
substituting the final result has a negligible effect on the
parameter fits.) After this source model is subtracted
from each band, the spectra are combined to form our
best estimate of the CMB signal, shown in Figure 1.

The 7-year power spectrum is cosmic variance limited,
i.e., cosmic variance exceeds the instrument noise, up to
l = 548. (This limit is slightly model dependent and can
vary by a few multipoles.) The spectrum has a signal-

to-noise ratio greater than one per l-mode up to l = 919,
and in band-powers of width ∆l = 10, the signal-to-noise
ratio exceeds unity up to l = 1060. The largest improve-
ment in the 7-year spectrum occurs at multipoles l > 600
where the uncertainty is still dominated by instrument
noise. The instrument noise level in the 7-year spectrum
is 39% smaller than with the 5-year data, which makes it
worthwhile to extend the WMAP spectrum estimate up
to l = 1200 for the first time. See Figure 2 for a compari-
son of the 7-year error bars to the 5-year error bars. The
third acoustic peak is now well measured and the onset
of the Silk damping tail is also clearly seen by WMAP.
As we show in §4, this leads to a better measurement
of Ωmh2 and the epoch of matter-radiation equality, zeq,
which, in turn, leads to better constraints on the effective
number of relativistic species, Neff , and on the primor-
dial helium abundance, YHe. The improved sensitivity
at high l is also important for higher-resolution CMB
experiments that use WMAP as a primary calibration
source.

2.4. Temperature-Polarization (TE, TB) Cross Spectra

The 7-year temperature-polarization cross power spec-
tra were formed using the same methodology as the 5-
year spectrum (Page et al. 2007; Nolta et al. 2009). For
l ≤ 23 the cosmological model likelihood is estimated di-
rectly from low-resolution temperature and polarization
maps. The temperature input is a template-cleaned, co-
added V+W band map, while the polarization input is a
template-cleaned, co-added Ka+Q+V band map (Gold

For FRW

⟨a∗
ℓm aℓ′m′⟩ = Cℓ δℓℓ′ δmm′

There has been some claim of violation of statistical
isotropy of the CMB perturbations, particularly at the
largest observed scales.

T =
∑

ℓm

aℓm Yℓm

For FRW

⟨a∗ℓm aℓ′m′⟩ = Cℓ δℓℓ′ δmm′

Claims of violation of statistical isotropy of

the CMB perturbations. A number of “2−3σ

effects”, significance susceptible to statistics

used. Some of these claims concern the largest

scale modes, for which additional problems

due to galaxy contamination

Planck 2015



Inflation

‣resolves open issues of big bang universe
horizon, flatness, monopole, 
initial singularity problems...

‣generates a curvature perturbations for seed of structure 
formation

‣is driven by an effective scalar field `inflaton’

φ

V(φ)

scale-invariant, adiabatic, Gaussian

Starobinsky, Sato, Guth

quasi deSitter phase
≪1

slow-roll

Inflation:

Open issue: particle physics interpretation is still lacking

construction of consistent inflationary universe 
model from fundamental theory (string theory)

Motivation:



N=1 vs N=8 supergravity

Objection:
(slow-roll) inflation consistent with observations 
occurs in N=8 supergravity?
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Supergravity: low-energy limit of string theory 



N=8 gauged supergravity

Dall’Agata-Inverso-Trigiante 2012

•first example of `slow-roll’ de Sitter vacua Dall’Agata-Inverso 2012

In addition to the deWit-Nicolai theory (c=0), a new 
deformation of N=8 gauged SUGRA was recently found 

SO(4)=SO(3)xSO(3)/Z2�sector of SO(4,4) gauging 
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Inflation in N=8 supergravity

focus on SO(3)xSO(3) invariant sector of SO(4,4) gaugings 

•numerically traced the trajectory of inflaton

JCAP05(2015)028
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�3 = (x1 � x2)⇥ [3,�I9] . (4.22)

The kinetic term at the origin O reads
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where we have defined
x+ ⌘ 4x1 + x2 , x� ⌘ x2 � x1 . (4.24)

Following the same argument as in the SO(4, 4) case, the 3⇥ 3 matrices �1 and �2 are
related in a simple manner

�1 = x�I1,2 + �0 , �2 = x�I1,2 � �̄0 , (4.25)
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Since the matrix �0 falls into the family (A.3), we get

�0 = U�TU , U 2 U(3) , (4.27)

where the unitary matrix U has exactly the same structure as (A.9) and the eigenvector takes
the form
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The eigenvalues µi are the roots of the cubic equation Q(µi) = 0, where
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Hence we see
P

i µi = 0. Note that the variable x� decouples from the matrix U , hence also
from Q(µ). By replacing x2 by x� in the SO(4, 4) kinetic term (3.43), one obtains the full
kinetic term for SO(5, 3) gaugings, i.e.,
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Einstein-Scalar system:

JCAP05(2015)028

with I1,2 = diag(1,�1,�1). It therefore su�ces to compute

�0 = U� TU , U 2 U(3) , � = diag(µi, µ2, µ3) . (3.38)

In appendix A, we describe how to implement the Autonne-Takagi factorization of the matrix
�0 of the form (3.37). The eigenvalues µi can be obtained by the procedure laid out in
appendix A and turn out to be the roots of the cubic equation Q(µi) = 0 given in (A.5). In
the present case, we have
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One sees that the one of the roots is not independent on account of the constraint
P

i µi = 0.
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As demonstrated in detail in appendix A, the unitary matrix U can be parametrized by
SU(2) Euler angles ✓i. Hence we can view (x2, µi, ✓i) under a constraint

P

i µi = 0 as new
variables describing six scalar degrees of freedom. We give in eq. (B.1) the expressions of the
original coordinates (x1, x2, y1, y2, w1, w2) in terms of the new variables (x2, µi, ✓i).

After some tedious computations, we obtain the expression for the potential,
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etc

•first example of analytic expressions for 6 dim scalars

Kodama-MN 2015



Inflation in N=8 supergravity

JCAP05(2015)028

Figure 6. The left panel is a 3D plot of the potential on ⌃2 for s = sc + 1.4 · 10�5, and the right
panel is its contour plot. The DI saddle points and the central dS extremum are shown by red and
blue dots, respectively, as for s = 2. Some examples of trajectories on the ⌃2 plane are shown on the
right panel.

Figure 7. The left panel shows the time evolution of ↵(t) for trajectories shown in figure 6. The
trajectory and ↵(t) for the same solution are drawn with the same color. In the right panel, the blue
inflationary trajectory is shown with the contours of ✏V (green curves) and ⌘V (grey, lightblue and
yellow curves). ✏V = 1 for the outermost thick green curve and decreases toward inner curves by the
factor 10�1/2. The orange and lightblue curves correspond to ⌘V = �0.01 and �0.02, respectively,
and the grey curves correspond to ⌘V = �0.03,�0.04, · · · . The red dot on the trajectory indicates
the N = 60 point.

– 34 –
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By controlling the deformation 
parameter, sufficient duration of 
inflation (N=60 e-folding) can be 
achieved!

does not require the fine-tuning of
initial condition for scalars



Inflation in N=8 supergravity
Planck Collaboration: Constraints on inflation 55

Fig. 54. Marginalized joint 68 % and 95 % CL regions for ns and r0.002 from Planck alone and in combination with its cross-
correlation with BICEP2/Keck Array and/or BAO data compared with the theoretical predictions of selected inflationary models.

further improving on the upper limits obtained from the different
data combinations presented in Sect. 5.

By directly constraining the tensor mode, the BKP likeli-
hood removes degeneracies between the tensor-to-scalar ratio
and other parameters. Adding tensors and running, we obtain

r0.002 < 0.10 (95 % CL, Planck TT+lowP+BKP) , (168)

which constitutes almost a 50 % improvement over the Planck
TT+lowP constraint quoted in Eq. (28). These limits on tensor
modes are more robust than the limits using the shape of the
CTT
` spectrum alone owing to the fact that scalar perturbations

cannot generate B modes irrespective of the shape of the scalar
spectrum.

13.1. Implications of BKP on selected inflationary models

Using the BKP likelihood further strengthens the constraints
on the inflationary parameters and models discussed in Sect. 6,
as seen in Fig. 54. If we set ✏3 = 0, the first slow-roll pa-
rameter is constrained to ✏1 < 0.0055 at 95 % CL by Planck
TT+lowP+BKP. With the same data combination, concave po-
tentials are preferred over convex potentials with log B = 3.8,
which improves on log B = 2 obtained from the Planck data
alone.

Combining with the BKP likelihood strengthens the con-
straints on the selected inflationary models studied in Sect. 6.
Using the same methodology as in Sect. 6 and adding the BKP
likelihood gives a Bayes factor preferring R2 over chaotic in-
flation with monomial quadratic potential and natural inflation
by odds of 403:1 and 270:1, respectively, under the assumption
of a dust equation of state during the entropy generation stage.
The combination with the BKP likelihood further penalizes the
double-well model compared to R2 inflation. However, adding

Table 17. Results of inflationary model comparison using the
cross-correlation between BICEP2/Keck Array and Planck. This
table is the analogue to Table 6, which did not use the BKP like-
lihood.

Inflationary Model ln B0X

wint = 0 wint , 0

R + R2/6M2 . . . +0.3
n = 2 �6.0 �5.6
Natural �5.6 �5.0
Hilltop (p = 2) �0.7 �0.4
Hilltop (p = 4) �0.6 �0.9
Double well �4.3 �4.2
Brane inflation (p = 2) +0.2 0.0
Brane inflation (p = 4) +0.1 �0.1
Exponential inflation �0.1 0.0
SB SUSY �1.8 �1.5
Supersymmetric ↵-model �1.1 +0.1
Superconformal (m = 1) �1.9 �1.4

BKP reduces the Bayes factor of the hilltop models compared
to R2, because these models can predict a value of the tensor-to-
scalar ratio that better fits the statistically insignificant peak at
r ⇡ 0.05. See Table 17 for the Bayes factors of other inflationary
models with the same two cases of post-inflationary evolution
studied in Sect. 6.

13.2. Implications of BKP on scalar power spectrum

The presence of tensors would, at least to some degree, require
an enhanced suppression of the scalar power spectrum on large
scales to account for the low-` deficit in the CTT

` spectrum. We
therefore repeat the analysis of an exponential cut-off studied

Our model:
ns~ 0.96
r ~ 10-3 :small amount of gravitational waves

:(slightly) red-tilted

would be tested in future observations (LiteBIRD)



Summary

Compared to N=1 supergravity, N=8 theory is more 
predictable to inflation

‣proposed a method for deriving the potential in analytic 
manner  

‣were able to evaluate the mass spectrum group-
theoretically

‣constructed cosmic inflationary model

without fine-tuning of initial conditions

compatible with Planck data



String cosmology

‣how to obtain/stabilize 4 dimensional world

‣how to obtain accelerated expansion

String theory:

Difficulties (in N=1 supergravity framework):

‣ likely candidate of particle unifications
‣ predicts higher dimensions (10/11)
‣ reduces in low energy to supergravity

•string landscape problem

10500 false vacua Susskind 2003

c.f `No-go theorem’ in higher dim SUGRA Maldacena-Nunez 2003

•`predictability’ problem
arbitrary # of scalars & shape of V are allowed

K=K(φ, φ*): Kahler potential
W=W(φ): superpotential



Our approach

comparison to CMB 
data

(density perturbation, 
gravitational waves)

String theory 

applications

(i) classification
(ii) stability analysis

(iii) construction of inflation

Killing spinor

4

At first glance, one may worry about that the X < 0
case does not allow the appropriate fall-off behavior. To
see this, we restrict ourselves to the static and spherical
symmetric spacetimes and deduce the asymptotic form of
K.

∫
d4xK

√
−g ∼

∫
dr(Wφφ′(r/ℓ)n +W 2)r2 (n = 0 for

Minkowski and n = 1 for anti-deSitter with the curvature
radius ℓ). When n = 0 and Wφ ̸= 0, W ∼ 1/r. When
n = 1, W ∼ 1/ℓ+1/r. Once we fix the shape ofW (φ), we
have the solution for φ too. Therefore, we would expect
that there are non-trivial solutions. Note that there is no
homogeneous-isotropic solution with φ = φ(t) because of
X = φ̇2/2 > 0. This means that the case (ii) cannot be
applied to a cosmological argument.
Finally let us consider the case in which the mass van-

ishes. Eq. (22) indicates that ∇̂iϵ = δλ = T (matter)
µν = 0

holds on Σ. A slight deformation of the surface implies

∇̂µϵ = δλ = T (matter)
µν = 0 holds. As shown in Ref. [10],

they imply that the spacetime is anti-deSitter/Minkowski
and φ is constant if the spacetime is asymptotically glob-
ally anti-deSitter/Minkowski.2 This statement means
that the ground state of the spacetime is maximally sym-
metric. This is a quite natural and important conse-
quence.

IV. SUPERSYMMETRIC BACKGROUNDS

Once an inequality has been proved, one is next in-
terested in the cases where the inequality is saturated.
In the previous section we demonstrated that this is
the case only for anti-deSitter/Minkowski, provided the
spacetime globally approaches asymptotically the anti-
deSitter/Minkowski space-time. In this section we relax
the asymptotic boundary conditions and argue the in-
terrelationships between the positive mass theorem and
supersymmetry.
In supergravity, the gravitational background is said

to preserve supersymmetry or be in a BPS state if the
variation of the fermionic configurations vanishes. This
forces the spacetime to obey the first-order differential
equations,

∇̂µϵ = 0 , δλ = 0 . (28)

In the present case, we have

(∇µ +W (φ)γµ) ϵ = 0 , (29a)
(
γµ∇µφ− 4Wφ

KX

)
ϵ = 0 , (29b)

where K is given by (26) or (27). The spinor ϵ obeying
these equations is conventionally called a Killing spinor.
This is because V µ = iϵ̄γµϵ is always a causal Killing vec-
tor when the theory can be embedded into the genuine

2 This is not the case for asymptotically locally anti-deSitter [20]

supergravity theories (see [21]). In the generic gravita-
tional theories, V µ = iϵ̄γµϵ becomes a Killing vector of
BPS spacetime if the following condition hold

Ā(µγν) = γ(µAν) . (30)

This condition is fulfilled for the present model (16).
We shall refer respectively to the 1st (2nd) equation of
Eq. (28) a gravitino (dilatino) Killing spinor equation,
although they might not have a supergravity origin.

It deserves to notice that the existence of the nontriv-
ial geometries is not always assured [22]. To check the
consistency, we compute the integrability condition for
the dilation Killing spinor. Acting both sides of equation
γµ∇µφϵ = (4Wφ/KX)ϵ to ∇νφ∇ν , we have

γµ∇µXϵ =

(
8XWφφ

KX
+

4Wφ

K2
X

∇µφ∇µKX

+
16WW 2

φ

K2
X

+ 2XW

)
ϵ . (31)

Acting γν∇ν to δλ = 0 yields

0 =γµ∇µ

[(√
KXγµ∇µφ− 4Wφ√

KX

)
ϵ

]

=

(√
KX∇2φ− 16WφWφφ

K3/2
X

+
24WWφ√

KX
+

4Wφ

K3/2
X

γµ∇µKX

)
ϵ . (32)

where we have used ∇̂µϵ = 0 and δλ = 0. Inserting (31)
into (32), we obtain

1√
KX

(
KX∇2φ+∇µφ∇µKX +Kφ

)
ϵ = 0 , (33)

It turns out that the scalar field equation (15) is auto-
matically satisfied if ϵ satisfies (28).

Similarly, the integrability condition of the Killing
spinor implies

0 = γν∇̂[µ∇̂ν]ϵ = −1

4
(Rµνγ

ν − 2γνFµν) ϵ . (34)

Substitution of the current model gives

Eµνγ
νϵ = 0 , (35)

where

Eµν := Rµν − [KX∇µφ∇νφ+ (XKX −K)gµν ] . (36)

The vanishing Eµν amounts to requiring Einstein’s equa-
tions. When V µ = iϵ̄γµϵ is timelike, Eµν = 0 follows au-
tomatically, whereas when V µ is null, except for the sin-
gle component of Einstein’s equations are satisfied. This
is the common feature in supergravity and provides the
consistency check.
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