IT reconstruction

G. Morello on behalf of the KLOE-2 IT group July 13th, 2015

IT Operation with Collisions

May 12th 2014 IT On for the very first time with Collisions

1. IT Layer #1 Currents at Injection: discharges with values up to tens of microA

2. IT in Stand-by mode: Layer #1 Currents discharges at injection also when in Standby

۲

e-injection & beam losses can be very dangerous increasing the discharge occurrence → passive divider

3. IT Layer #1 Strip Multiplicity: Cosmic-ray muons vs Collisions

IT Alignment & Calibration

1. NON-RADIAL TRACKS

The angle formed by a track and the orthogonal to the cathode influences the reconstruction at two levels: **shift & spread**

2. MAGNETIC FIELD

KLOE-2 0.52 T magnetic field is orthogonal to the electric fields of the triple-GEMs, introducing two effects: a **shift** $\Delta x(\alpha_L)$ and consequently a **larger spread of the electron cloud.**

- Cosmic-ray muons, w/wout B-field & Bhabha scattering to evaluate two effects
- Reconstruction Software integration within official framework (ongoing)

Cosmic-ray muon data without magnetic field(I)

- Alignment based on residuals distribution.
- Residuals are defined as the difference between the expected DC tracks position on IT and

Cosmic-ray muon data without magnetic field (II)

Primary charge center of gravity at half drift gap in good approximation, for this reason the measured point on the anode readout is projected on half drift gap.

Δx: 0.098 ± 0.003 cm **Δy:** -0.002 ± 0.001 cm **Δz:** -0.203 ± 0.004 cm **RES_x**: 0.157 → 0.093 ± 0.005 cm **RES_y**: 0.028 → 0.017 ± 0.001 cm **RES_z**: 0.358 → 0.106 ± 0.006 cm

x residuals UP + DOWN

First IT calibration with θ and ϕ angles from DC tracks

A clear dependence of the residuals on the angles of the DC crossing track is evident. From these correlations we could obtain some preliminary calibration functions:

 $\begin{aligned} \mathbf{x}' &= \mathbf{x}_{halfgap} + 0.029 + 0.115^* \sin(2^*(\Phi - 30^\circ)) \\ \mathbf{y}' &= \mathbf{y}_{halfgap} - 0.048 + 0.07^* \cos(2^*(\Phi - 30^\circ)) \end{aligned}$

Present status

8000

7000

6000

y residuals UP + DOWN

xyz corr.

 χ^2 / ndf

p0

p1

p2

xyz corr., $\beta = -0.022$, $\gamma = -0.08$

721.1 / 54

 1452 ± 55.6

 -0.03071 ± 0.00124

 0.1066 ± 0.0018

Two rotations applied:

- 0.022° around y axis (vertical dir.)
- -0.08° around z axis (beam line)

Summary

FIRST IT ALIGNMENT AND CALIBRATION WITHOUT MAGNETIC FIELD DONE

Using the following correction:

- 1) move readout position to half drift gap (from validation tests @ Cosmic-ray stand)
- 2) DC track θ angle for z coordinate
- 3) DC track φ angle for x-y coordinate
- 4) rotation around z and y axis

we reached

	Convolution of DC and IT resolutions
Δz: -0.207 ± 0.003 cm → -0.0008 ± 0.0012 cm	RES _z : 0.358 ± 0.003 cm \rightarrow 0.113 ± 0.002 cm
$Δy: -0.005 \pm 0.004 \text{ cm} → 0.0036 \pm 0.0004 \text{ cm}$	RES_{y} : 0.028 ± 0.004 cm \rightarrow 0.0302 ± 0.0005 cm
Δx : 0.086 ± 0.001 cm \rightarrow 0.005 ± 0.001 cm	RES_x : 0.157 ± 0.001 cm \rightarrow 0.065 ± 0.001 cm

Next steps:

- Expected position on IT: optimization of the DC tracking residuals and computation of errors (AC module already modified)
- Alignment and calibration for all the layers
- Calibration with B-field using cosmic-ray muons and Bhabha scattering ongoing
- Insert final alignment and calibration in IT tracking module (ITKALM Reconstruction Software in official KLOE-2 framework ongoing)

IT Alignment & Calibration (B field on) Gas: iC4H₁₀ 10%, Ar 90%, T=290 K, p=1 atm

0.3 0.25 0.2 0.2 0.2 0.2 0.2

N 0.1

KLOE-2 0.52 T magnetic field is orthogonal to the electric fields of the triple-**GEMs**, introducing two effects: a shift $\Delta x(\alpha_1)$ and consequently a larger spread of the electron cloud.

BHABHA SCATTERING

Preliminary Point of Closest Approach (PCA) of the track to beam-line

without alignment correction and calibration for B-field & non-radial tracks

B 0.05 0 -0.05-0.11.5 -0.15-0.2 -0.25 1 -0.3-0.35 -0.40.5 -0.45Average shift ≈ 1 mm -0.5 -0.55 1.2 0.4 0.6 0.8 -0.6B field (T) -0.18 -0 02 x-Axis [cm] -0.12 -0.1 -0.08 -0.06 -0.04 χ² / ndf 60.15 / 44 0.05304 Pro σ_x≈3 mm 389.3 ± 10. 13 ± 0.00606 m300 2738 ± 0.0080 53.97 ± 6.18 1200 -0.05337 ± 0.02657 0.8579 ± 0.0426 100 xp^3 (cm)⁴ 5⁵⁰⁰ 100- χ^2 / ndf 78.21 / 44 8400 σ_v≈3mm Pro 0.00114 ntries/0.0 402.6 ± 10.1 -0.05036 ± 0.00588 0.2841 + 0.0079 *⁴ *¹⁰C₃ 2 (City) 0 44.44 ± 6.46 -0.08795 ± 0.03158 0 868 ± 0 055 100 2 YP^{ca} -1 -2 0 -3 ypca (cm) 0

3

Experimental values Simulated values

(uuu)

₹2.5

"Paris" transformation

Measurements by laser tracker team were performed on the edges of the Layer 4 and, obviously, before the insertion of the Interaction Region inside KLOE.

 RES_{x} : 0.158 → 0.270 cm RES_{z} : 0.338 → 0.383 cm

$R_{PCA} < 5 \text{ cm}$ and θ selection

Construction of **100 x 100 mm2** planar chambers equipped with new concept for X-V readout and study of their behaviour in magnetic field.