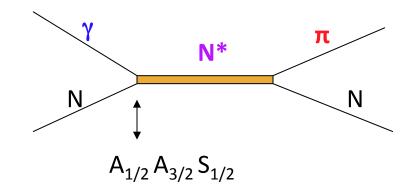

NINPHA E. Santopinto INFN Genova CdS, July 2015 santopinto@ge.infn.it

Models for the nucleon structure

state of the art

Non strange spectrum



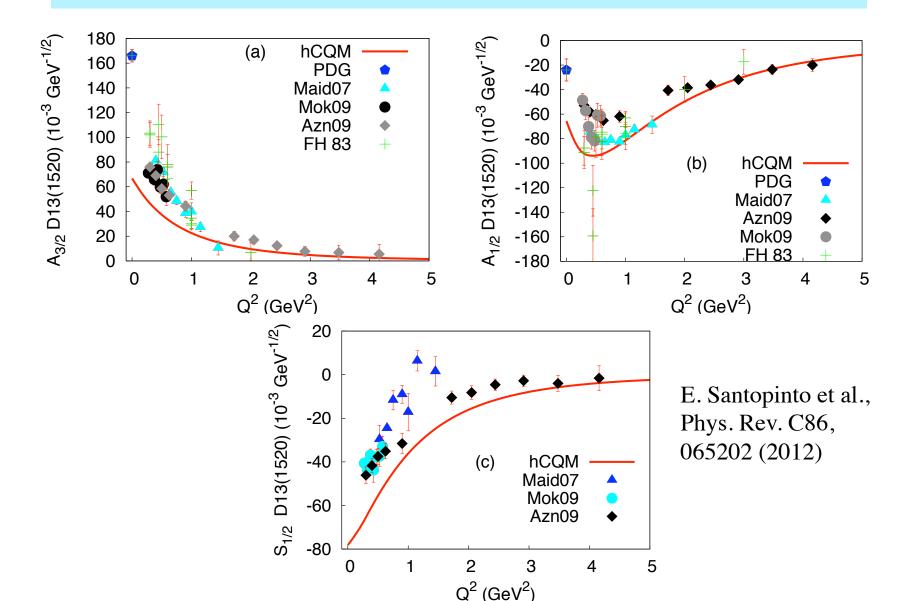
The helicity amplitudes

HELICITY AMPLITUDES

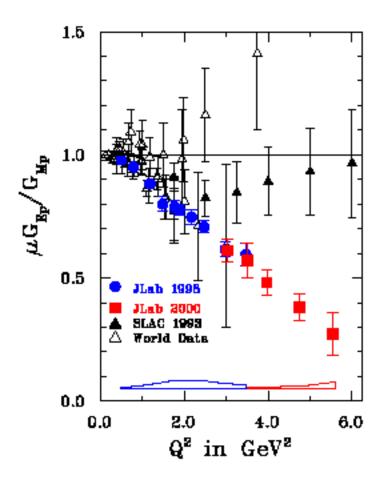
Extracted from electroproduction of mesons

Definition

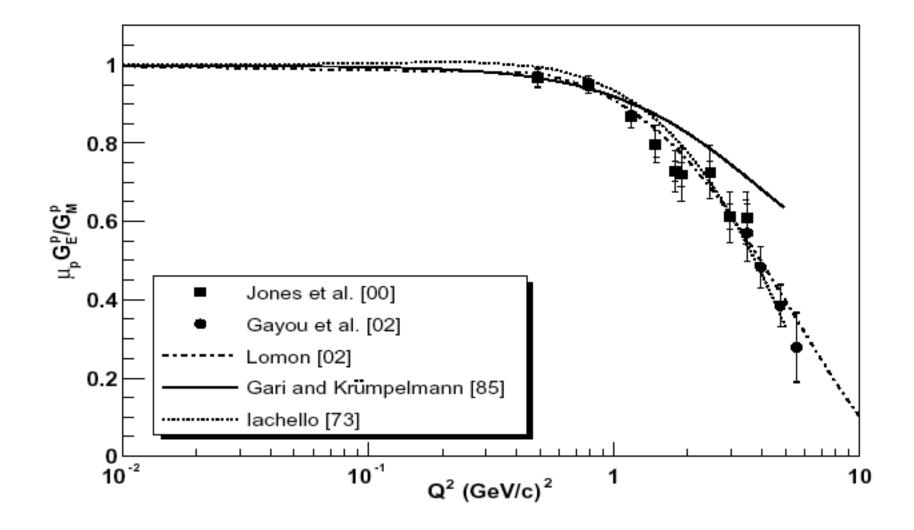
$$\begin{split} A_{1/2} &= \langle \mathbf{N}^* \mathbf{J}_z = 1/2 \mid \mathbf{H}_{em}^T \mid \mathbf{N} \mathbf{J}_z = -1/2 \rangle \\ A_{3/2} &= \langle \mathbf{N}^* \mathbf{J}_z = 3/2 \mid \mathbf{H}_{em}^T \mid \mathbf{N} \mathbf{J}_z = 1/2 \rangle \\ S_{1/2} &= \langle \mathbf{N}^* \mathbf{J}_z = 1/2 \mid \mathbf{H}_{em}^L \mid \mathbf{N} \mathbf{J}_z = 1/2 \rangle \\ \end{split}$$

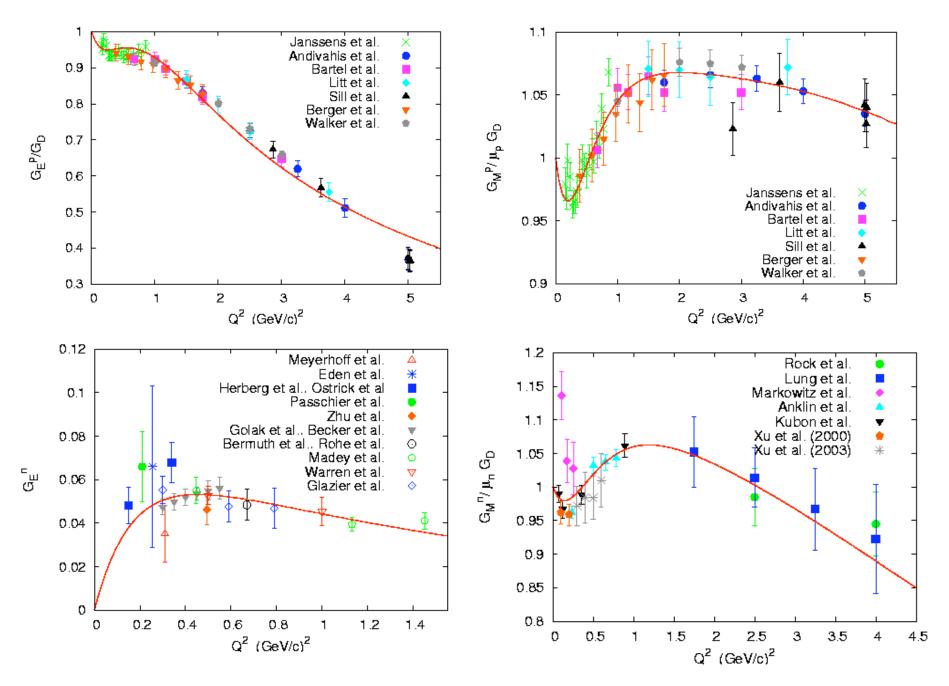

N, N* nucleon and resonance as 3q states $H_{em}^{T} H_{em}^{l}$ model transition operator

§ results for the negative parity resonances:
M. Aiello, M.Giannini, E. Santopinto J. Phys. G24, 753 (1998)

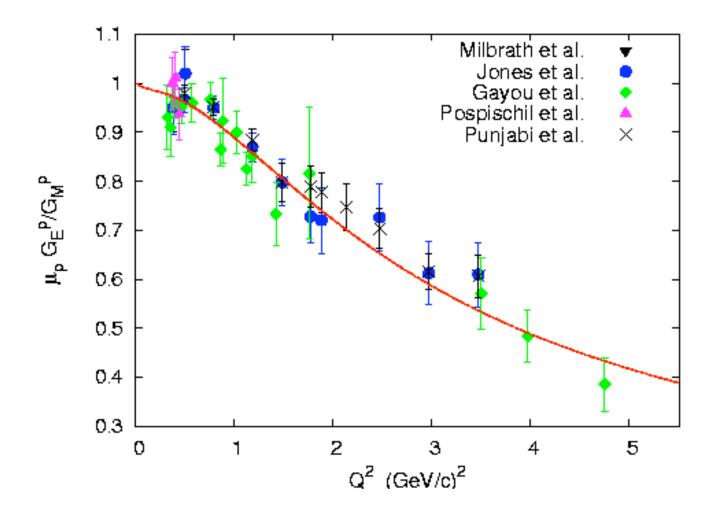

Systematic predictions for transverse and longitudinal amplitudes E. Santopinto et al., Phys. Rev. C86, 065202 (2012)

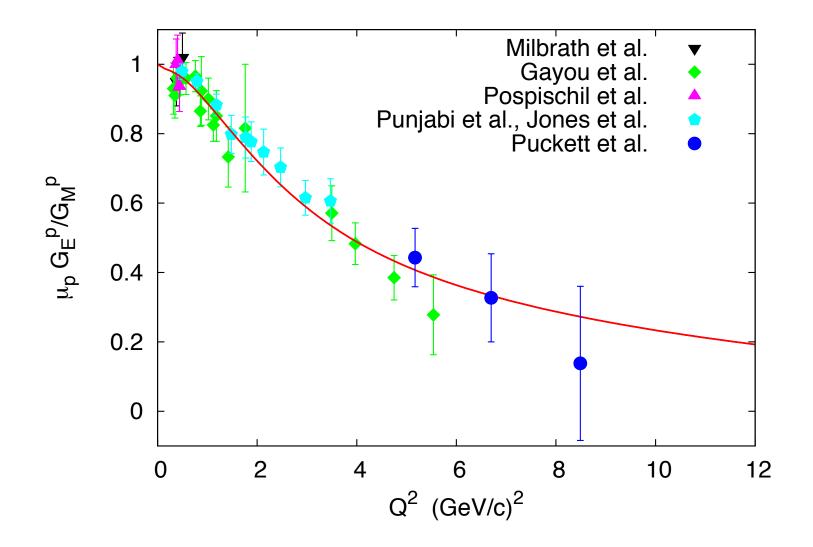
Proton and neutron electro-excitation to 14 resonances

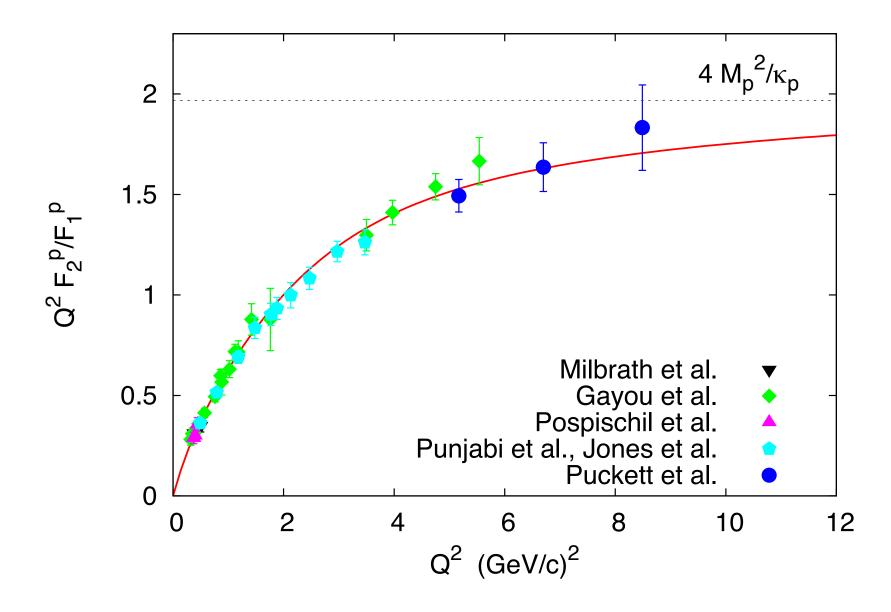

N(1520) 3/2⁻ transition amplitudes

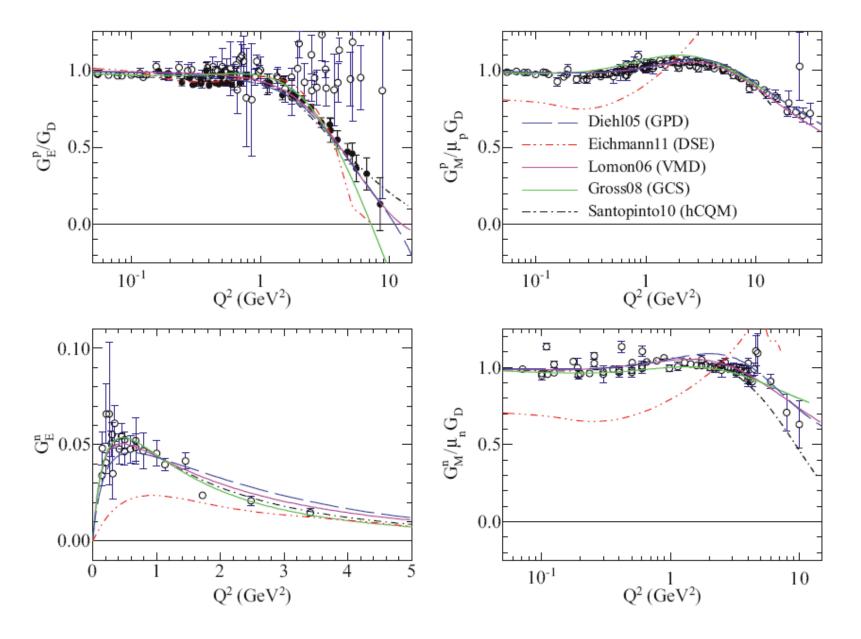


The nucleon elastic form factors




- elastic scattering of polarized electrons on polarized protons
- measurement of polarizations asymmetry gives directly the ratio G^{p}_{E}/G^{p}_{M}
- discrepancy with Rosenbluth data (?)
- linear and strong decrease
- pointing towards a zero (!)
- new data (jan 2010) seem to confirm the behaviour



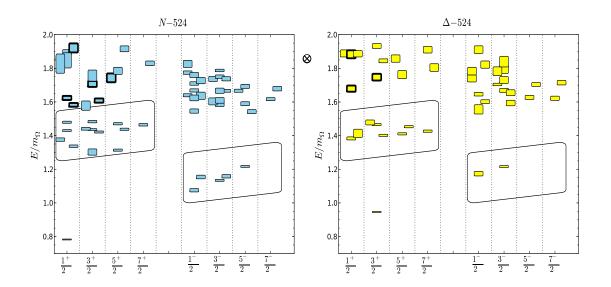


Genoa group, Phys. Rev. C76, 062201 (2007)

- The hyp model seems to provide realistic wave functions
- The main reason is the O(7) dynamical symm.

Solvable model H=f(C_2(O(7)) analytical model !!!

energy levels, w. fs and observables all expressed analytically
Right power low behavior for form factors and transition f.f.


Good results due to semplicity

E. Santopinto, F. Iachello, Eur. Phys. J. A **1**, 307 (1998) ; Bijker, Iachello, Santopinto, J.Phys. A (1998)

LQCD results: SU(6)× O(3) QM states up to ≈2.2 GeV

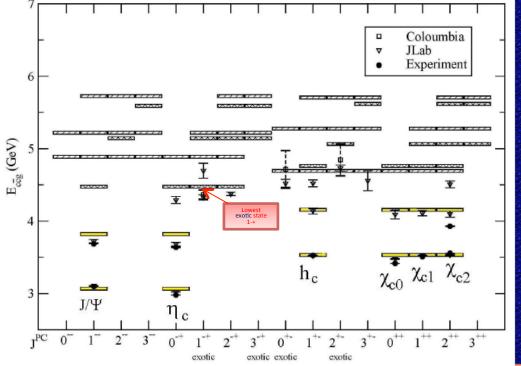
J. J. Dudek, R. G. Edwards

Phys.Rev. D85 (2012) 054016

HYBRIDS

Exotic spectroscopy

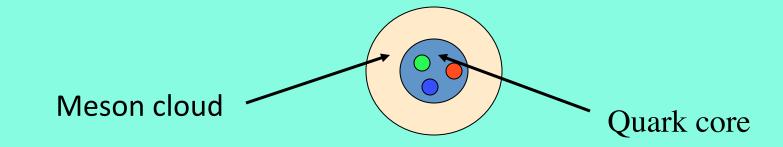
Hybrids levels


- For J_g=1 (lowest energy) we can have two gluelumps states: J_g^{PC}=1⁺⁻, 1⁻⁻
- Coupling the gluelump with the quark-antiquark state with $L_0=0$ and $S_0=0,1$ we get
- in the first case: $J^{PC}=1^{--}$ for $S_Q=0$ $J^{PC}=0^{-+},1^{-+},2^{-+}$ for $S_Q=1$ in the second case: $J^{PC}=1^{+-}$ for $S_Q=0$ $J^{PC}=0^{++},1^{++},2^{++}$ for $S_Q=1$ the hybrid with exotic quantum numbers 1^{-+} appear in this lowest multiplet

J^{PC}_g=1⁺⁻, 1⁻⁻

Hybrids spectrum

$J_g^{P_g}$	This work [GeV]	J^{PC}	Lattice [14] [GeV]
1^{+}	4.476	$0^{-+}, 1^{-+}, 2^{-+}, [1^{}]$	4.291(48), 4.327(36), 4.376(24), [?]
1-	4.762	$1^{+-}, 2^{++}, [0^{++}, 1^{++}]$	4.521(48), 4.508(48), [?,?]
2^{+}	5.144	$1^{-+}, [2^{}, 2^{-+}, 3^{-+}]$	4.696(103), [?,?,?]
2^{-}	5.065	$2^{+-}, [1^{++}, 2^{++}, 3^{++}]$	4.733(42), [?,?,?]


Spectrum: normal charmoniums (yellow boxes) and charmonium hybrids (dashed boxes) confronted with experimental and lattice data

Unquenching of hadron models

emerging picture:
quark core plus (meson or sea-quark) cloud

$$|\psi_A\rangle = \mathcal{N}\left\{|A\rangle + \sum_{BClJ} \int d\vec{K} \, k^2 dk \, |BC\vec{K}k \, lJ\rangle \frac{\langle BC\vec{K}k \, lJ \, | T^{\dagger} \, | A\rangle}{M_A - E_B - E_C}\right\}$$

UQM: charmonium spectrum with self-energy corr. Ferretti, Galata' and Santopinto, Phys. Rev. C 88, 015207 (2013)

State	J^{PC}	DĐ	$\overline{D}D^*$ $D\overline{D}^*$	\bar{D}^*D^*	$D_s \bar{D}_s$	$D_s \bar{D}_s^* \bar{D}_s^* \bar{D}_s D_s^*$	$D_s^* \bar{D}_s^*$	$\eta_c \eta_c$	$\eta_c J/\Psi$	$J/\Psi J/\Psi$	$\Sigma(E_a)$	E_a	M_a	$M_{exp.}$					
$\begin{array}{c} \eta_{c}(1^{1}S_{0})\\ J/\Psi(1^{3}S_{1})\\ \eta_{c}(2^{1}S_{0})\\ \Psi(2^{3}S_{1})\\ h_{c}(1^{1}P_{1})\\ \chi_{c0}(1^{3}P_{0})\\ \chi_{c1}(1^{3}P_{1})\\ \chi_{c2}(1^{3}P_{2})\\ h_{c}(2^{1}P_{1})\\ \chi_{c0}(2^{3}P_{0})\\ \chi_{c1}(2^{3}P_{1})\\ \chi_{c2}(2^{3}P_{2})\\ c\bar{c}(1^{1}D_{2})\\ \Psi(3770)(1^{3}D_{1})\\ c\bar{c}(1^{3}D_{2}) \end{array}$	$\begin{array}{c} 0^{-+} \\ 1^{} \\ 0^{-+} \\ 1^{} \\ 0^{++} \\ 1^{++} \\ 2^{++} \\ 1^{+-} \\ 0^{++} \\ 1^{++} \\ 2^{++} \\ 2^{-+} \\ 1^{} \\ 2^{} \end{array}$	-18 -31 -17 -23 	-34 -27 -52 -42 -59 - - - - - - - - - - - - - - - - - -	-31 -41 -54 -48 -72 -53 -57 -76 -86 -66 -54 -62 -84 -61	-2 -2 -4 -3 -1 -1 -4 -4 -4	-8 -9 -7 -11 -9 -8 -12 - -11 -8 -12 -2 -11	-8 -10 -8 -10 -10 -15 -11 -10 -8 -13 -9 -10 -10 -16 -11		-2 -1 -2 - - - -1 -1 -1 -1 -	-2 -1 -2 -3 -2 -2 -2 -1 -1 -1 -1	-83 -96 -111 -134 -130 -125 -129 -137 -152 -124 -117 -121	3233 3699 3774 3631 3555 3623 3664 4029 3987 4025	3430 3494 3527 3877 3863 3908	3097 3637 3686 3525 3415 3511 3556					
cc(1 ^{D2})	3	-25	-49	-01 -88	-4	-11 -8	-11 -10	_	(Ge 4 3 2 2	(V) .0- .5- .0- .5- .0- .5-		-	I+-	X(3	<u>872)</u>	+ 2-	+ 2	 3	J ^{P0}

Interpretation of the X(3872) as a charmonium state plus an extra component due to the coupling to the meson-meson continuum Ferretti,Galatà, Santopinto, Phys.Rev. C88 (2013) 1, 015207

- UCQM results used to study the problem of the X(3872) mass, meson with $J^{PC} = 1^{++}$, $2^{3}P_{1}$ quantum numbers
- X(3872) very close to D bar-D* decay threshold
- Possible importance of continuum coupling effects?
- Several interpretations: pure c bar-c
 - D bar-D* molecule

tetraquark

c bar-c + continuum effects

Ineed to study strong and radiative decays to uderstand the situation

Radiative decays

Ferretti, Galatà, Santopinto, Phys. Rev. D90 (2014) 5, 054010

Transition	E_{γ} [MeV]	$\Gamma_{c\bar{c}}$ [KeV] present paper			$\begin{array}{c} \Gamma_{D\bar{D}^{*}} \ [\text{KeV}] \\ \text{Ref.} \ [59] \end{array}$	$ \begin{array}{c} \Gamma_{c\bar{c}+D\bar{D}^{*}} & [\text{KeV}] \\ \text{Ref.} & [60] \end{array} $	$\begin{array}{c} \Gamma_{exp.} \ [\text{KeV}] \\ \text{PDG} \ [43] \end{array}$
$X(3872) \rightarrow J/\Psi\gamma$	697	11	8	64 - 190	125 - 251	2 - 17	≈ 7
$X(3872) \rightarrow \Psi(2S)\gamma$	181	70	0.03			7 - 59	≈ 36
$X(3872) \rightarrow \Psi(3770)\gamma$	101	4.0	0				
$X(3872) \rightarrow \Psi_2(1^3D_2)\gamma$	34	0.35	0				

[7] Swanson: molecular interpretation[9] Oset: molecular interpretation[59]-[60] Faessler : molecular ; ccbar +molecular

The Molecular model does not predict radiative decays into $\Psi(3770)$ and $\Psi_2(1^3D_2)$ -> Possible way to distinguish between the two interpretations

Quasi two-body decay $X(3872) \rightarrow D^0(\overline{D}^0\pi^0)_{\overline{D}^{0*}}$

Ferretti, Galatà, Santopinto, Phys. Rev. D90 (2014) 5, 054010

$$\Gamma_{\bar{D}^{0*}} < 2.1 \text{ MeV}$$
 $\Gamma_{\bar{D}^{0*}} = 0.1 \text{ MeV}$

$$\Gamma_{X(3872)\to D(\bar{D}\pi)_{\bar{D}^*}} = 0.50 - 0.62 \text{ MeV}, \quad M_{X(3872)} = 3871.85 \text{ MeV}$$

$$\Gamma_{X(3872)\to D(\bar{D}\pi)_{\bar{D}^*}} = 0.54 - 0.75 \text{ MeV}, \quad M_{X(3872)} = 3871.95 \text{ MeV}$$

Experimental results:

 $\Gamma_{X(3872) \to D^0 \bar{D}^{0*}} = 3.9^{+2.8+0.2}_{-1.4-1.1} \text{ MeV}$ PDG Aushev et al. [Belle Coll.], Phys. Rev. D **81**, 031103 (2010)

 $\Gamma_{X(3872) \to D^0 D^{0*}} = 3.0^{+1.9}_{-1.4} \pm 0.9 \text{ MeV}$ PDG Aubert et al. [BABAR Coll.], Phys. Rev. D 77011102(2008)

Prompt production from CDF collaboration in highenergy hadron collisions incompatible with a molecular interpretation

- meson-meson molecule: large (a few fm) and fragile
- See: Bignamini et al., Phys. Rev. Lett. **103**, 162001 (2009); Bauer, Int. J. Mod. Phys. A **20**, 3765 (2005)

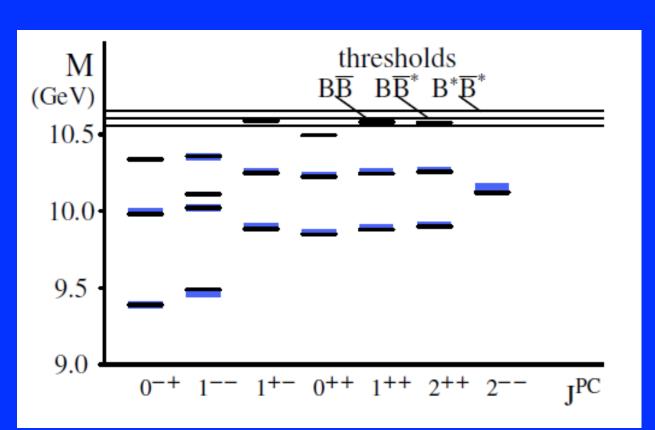
Bottomonium Strong Decays

Ferretti, Santopinto, Phys.Rev. D90 094022 (2014)

Two-body strong decays. Results:

State	Mass [MeV]	J^{PC}	Β₿	BB^* $\overline{B}B^*$	B*B*	$B_s B_s$	$\begin{array}{c} B_s \bar{B}_s^* \\ \bar{B}_s B_s^* \end{array}$	$B_s^* B_s^*$
$\Upsilon(4^3S_1)$	10.595	1	21	_	_	_	_	_
	$10579.4 \pm 1.2^{\dagger}$							
$\chi_{b2}(2^3F_2)$	10585	2^{++}	34	_	_	_	_	_
$\Upsilon(3^3D_1)$	10661	$1^{}$	23	4	15	_	_	_
$\Upsilon_2(3^3D_2)$	10667	$2^{}$	_	37	30	_	_	_
$\Upsilon_2(3^1D_2)$	10668	2^{-+}	_	55	57	_	_	_
$\Upsilon_3(3^3D_3)$	10673	$3^{}$	15	56	113	_	_	_
$\chi_{b0}(4^3P_0)$	10726	0^{++}	26	_	24	_	_	_
$\Upsilon_3(2^3G_3)$	10727	$3^{}$	3	43	39	_	_	_
$\chi_{b1}(4^3P_1)$	10740	1^{++}	_	20	1	_	_	_
$h_b(4^1P_1)$	10744	1^{+-}	_	33	5	_	_	_
$\chi_{b2}(4^3P_2)$	10751	2^{++}	10	28	5	1	_	_
$\chi_{b2}(3^3F_2)$	10800	2^{++}	5	26	53	2	2	_
$\Upsilon_3(3^1F_3)$	10803	3^{+-}	_	28	46	_	3	_
$\Upsilon(10860)$	$10876 \pm 11^{\dagger}$	$1^{}$	1	21	45	0	3	1
$\Upsilon_2(4^3D_2)$	10876	$2^{}$	_	28	36	_	4	4
$\Upsilon_2(4^1D_2)$	10877	2^{-+}	_	22	37	_	4	3
$\Upsilon_3(4^3D_3)$	10881	$3^{}$	1	4	49	0	1	2
$\Upsilon_3(3^3G_3)$	10926	$3^{}$	7	0	13	2	0	5
$\Upsilon(11020)$	$11019\pm8^{\dagger}$	$1^{}$	0	8	26	0	0	2

Bottomonium spectrum (in couple channel calculations)

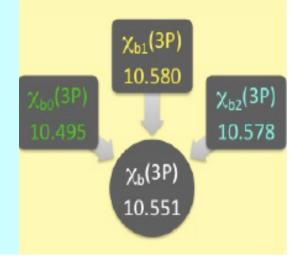

Ferretti, Santopinto, Phys.Rev. D90, 094022 (2014)

State	J^{PC}	ΒB	$B\bar{B}^*$ $\bar{B}B^*$	<i>B</i> * <i>B</i> *	$B_s \bar{B}_s$	$B_s B_s^* \\ \bar{B}_s B_s^*$	$B_s^* B_s^*$	$B_c B_c$	$B_c B_c^* \ ar{B}_c B_c^*$	$B_c^* \bar{B}_c^*$	$\eta_b \eta_b$	$\eta_b\Upsilon$	ΥΥ	$\Sigma(E_a)$	E_a	M_a	$M_{exp.}$
$\eta_b(1^1S_0)$	0^{-+}		-26	-26		-5	-5		-1	-1			0	-64	9455	9391	9391
$\Upsilon(1^{3}S_{1})$	$1^{}$	-5	-20 -19	-20 -32	-1	-5 -4	-5 -7	0	-1	-1 -1	_	0	0	-64 -69	9455 9558	9391 9489	9391 9460
	0^{-+}		-19 -43	-32 -41		-4 -8	-7		-1	-1	_		0	-101	9558 10081	9489 9980	9400 9999
$\eta_b(2^1S_0)$ $\Upsilon(2^3S_1)$		-			-			-		-1 -1	_	_					
	$1^{}_{0^{-+}}$	-8	-31 -59	-51	-2	-6 -8	-9 -8	0	0 -1	-1 -1	_	0	0	-108 -129	10130	10022	10023
$\eta_b(3^1S_0)$		-		-52	-			_	-1		_	_	0			10358	10255
$\Upsilon(3^3S_1)$	1		-45	-68	-2	-6	-10	0	_	-1	_	0	_	-146			
$h_b(1^1P_1)$	1'	-	-49	-47	_	-9	-8	_	-1	-1	_	0	_	-115	10000	9885	9899
$\chi_{b0}(1^3P_0)$			-	-69	-3	_	-13	0	_	-1	0	_	0	-108	9957	9849	9859
$\chi_{b1}(1^3P_1)$		_	-46	-49	_	-8	-9	_	-1	-1	_	_	0	-114	9993	9879	9893
$\chi_{b2}(1^3P_2)$			-32	-55	-2	-6	-9	0	-1	-1	0	_	0	-117	10017	9900	9912
$h_b(2^1P_1)$		_	-66	-59	_	-10	-9	_	-1	-1	_	0	_	-146		10247	
$\chi_{b0}(2^{3}P_{0})$		-33	_	-85	-4	_	-14	0	_	-1	0	_	0	-137	10363	10226	10233
$\chi_{b1}(2^3P_1)$		_	-63	-60	_	-9	-10	_	-1	-1	_	_	0	-144	10388	10244	10255
$\chi_{b2}(2^3P_2)$		-16	-42	-72	-2	-6	-10	0	0	-1	0	_	0	-149	10406	10257	10269
$h_b(3^1P_1)$	1^{+-}	_	-18	-73	_	-11	-10	_	-1	-1	_	0	_	-114	10705	10591	_
$\chi_{b0}(3^3P_0)$	0^{++}	-4	_	-160	-6	_	-15	0	_	-1	0	_	0	-186	10681	10495	_
$\chi_{b1}(3^3P_1)$	1^{++}	_	-25	-74	_	-11	-10	_	0	-1	_	_	0	-121	10701	10580	_
$\chi_{b2}(3^3P_2)$		-19	-16	-79	-3	-8	-12	0	0	-1	0	_	0	-138	10716	10578	_
$\Upsilon_2(1^1D_2)$	2^{-+}	_	-72	-66	_	-11	-10	_	-1	-1	_	_	0	-161	10283	10122	_
	$1^{}$	-24	-22	-90	-3	-3	-16	0	0	-1	_	0	_	-159	10271	10112	_
$\Upsilon_2(1^3 D_2)$			-70	-68	_	-10	-11	_	-1	-1	_	0	_	-161	10282	10121	10164
$\Upsilon_3(1^3D_3)$			-43	-78	-3	-8	-11	0	-1	-1	_	0	_	-163	10290	10127	_
- (-)																	

Bottomonium

Ferretti, Santopinto, Phys.Rev. D90 (2014) 9, 094022

• Results:


Couple Channels corrections to Bottomonium , the $\chi_b(3P)$ system Ferretti, Santopinto, Phys.Rev. D90 (2014) 9, 094022

- Results used to study some properties of the $\chi_b(3P)$ system, meson multiplet with N=3, L=1 quantum numbers
- $\chi_b(3P)$ states close to first open bottom decay thresholds
- Possible importance of continuum coupling effects?
- Pure c bar-c and c bar-c + continuum effects interpretations
- Necessary to study decays (strong, e.m., hadronic, ...) to confirm one interpretation

Couple Channels corrections to Bottomonium , the $\chi_b(3P)$ system Ferretti, Santopintio, Phys.Rev. D90 (2014) 9, 094022

Some experimental results for the mass barycenter of the system:

- $M[\chi_b(3P)] = 10.530 \pm 0.005 \text{ (stat.)} \pm 0.009 \text{ (syst.)} \text{ GeV}$
- Aad et al. [ATLAS Coll.], Phys. Rev. Lett. 108, 152001 (2012)
- $M[\chi_b(3P)] = 10.551 \pm 0.014 \text{ (stat.)} \pm 0.017 \text{ (syst.)} \text{ GeV}$
- Abazov et al. [D0 Coll.], Phys. Rev. D 86, 031103 (2012)

<u>J. Ferretti E. Santopinto</u>, Phys.Rev. D90 (2014) 9, 094022 arXiv:1506.04415 [hep-ph]

State Γ_{theor}	$({}^{3}P_{0})$ [MeV]	Fexp [I	MeV]				
$\Upsilon(4^3S_1)$ $\Upsilon(10860)$	21 71	$20.5 \pm 42^{+}_{-}$						
Meson	Mass [MeV]	J^{PC}	ΒĒ	$B\bar{B}^*$ $\bar{B}B^*$	$B^*\bar{B}^*$	$B_s \bar{B}_s$	$\begin{array}{c} B_s \bar{B}_s^* \\ \bar{B}_s B_s^* \end{array}$	$B_s^* \bar{B}_s^*$
$\Upsilon(10580)$ or $\Upsilon(4^3S_1)$	10.595	1	21	_	_	_	_	_
(0 ³ T)	10579.4 ± 1.2	2++	9.4					
$\chi_{b2}(2^3F_2) \ \Upsilon(3^3D_1)$	10585		34	-	15	_	_	_
$\Upsilon_2(3^3D_2)$	$10661 \\ 10667$	$1^{}$ $2^{}$	23	$\frac{4}{37}$	15 30	_	_	_
$\Upsilon_2(3^{-}D_2)$ $\Upsilon_2(3^{1}D_2)$	10668	2^{-+}	_	57 55	$\frac{50}{57}$	_	_	_
$\Upsilon_3(3^3D_3)$	10673	$3^{}$	15	$55 \\ 56$	113	_	_	_
$\chi_{b0}(4^3P_0)$	10726	0^{++}	$\frac{10}{26}$	_	24	_	_	_
$\Upsilon_{3}(2^{3}G_{3})$	10727	3	3	43	39	_	_	_
$\chi_{b1}(4^3P_1)$	10740	1^{++}	_	20	1	_	_	_
$h_b(4^1P_1)$	10744	1^{+-}	_	33	5	_	_	_
$\chi_{b2}(4^3P_2)$	10751	2^{++}	10	28	5	1	_	_
$\chi_{b2}(3^3F_2)$	10800	2^{++}	5	26	53	2	2	_
$\Upsilon_3(3^1F_3)$	10803	3^{+-}	_	28	46	_	3	_
$\Upsilon(10860)$ or $\Upsilon(5^3S_1)$	$10876\pm11^{\dagger}$	$1^{}$	1	21	45	0	3	1
$\Upsilon_2(4^3D_2)$	10876	$2^{}$	_	28	36	_	4	4
$\Upsilon_2(4^1D_2)$	10877	2^{-+}	_	22	37	_	4	3
$\Upsilon_3(4^3D_3)$	10881	$3^{}$	1	4	49	0	1	2
$\Upsilon_3(3^3G_3)$	10926	$3^{}$	7	0	13	2	0	5
$\Upsilon(11020)$ or $\Upsilon(6^3S_1)$	$11019\pm8^{\dagger}$	$1^{}$	0	8	26	0	0	2

State	J^P	Mass [MeV]	$D\pi$	$D^*\pi$	$D\rho$	$D^*\rho$	$D\eta$	$D^*\eta$	$D\omega$	$D^*\omega$	$D_s K$	D_s^*K	$D_s K^*$	$D_s^*K^*$
$D_1(1^3S_1)$	1-	2038	0	_	_	_	_	_	_	_	_	_	_	_
$D^{*}(2400) = D^{*}(1^{3}D)$	0±	2009^{\dagger}												
$D_0^*(2400)$ or $D_0(1^3P_0)$	0 '	2398	66	_	_	_	_	_	_	_	_	_	_	_
$D^{*}(9400) = D(1^{3}D)$	a^+	$2318 \pm 29^{\dagger}$	c	0			0							
$D_2^*(2460)$ or $D(1^3P_2)$	2 '	2501	6	2	_	_	0	_	_	_	_	_	_	_
D(arro) D(alg)	0^{-}	2463^{\dagger}		40										
$D_0(2550)$ or $D(2^1S_0)$	0	2582	_	42	-	-	-	-	-	_	-	-	_	_
$D(a^3 \alpha)$	1 -	$2539.4 \pm 4.5 \pm 6.8^{\dagger}$	10	90	0		c	-			4	1		
$D_1(2^3S_1)$	1-	2645	18	36	0	-	6	5	_	_	4	1	_	_
$D_1(1^3D_1)$	1-	2816	20	13	13	1	10	5	4	0	6	2	_	_
$D_3(1^3D_3)$	3^{-} 0^{+}	2833	11	8	1	15	2	1	0	4	1	0	_	_
$D_0(2^3P_0)$		2931	18	-	-	38	2		-	12	0	_	- 1	_
$D_2(2^3P_2)$		2957	13	23	22	45	6	7	7	16	4	4	1	-
$D_0(3^1S_0)$	0^{-}	3067	-	1	4	38	_	1	1	13	-	3	8	8
$D_1(3^3S_1)$	1^{-} 4^{+}	3111	$\frac{3}{11}$	2	1	31	0	0	0	11	0	1	5	15
$egin{array}{llllllllllllllllllllllllllllllllllll$	$\frac{4}{2^+}$	3113		8	4	36 19	2	1	1	12	1	0	0	1
$D_2(1^*F_2) \\ D_3(2^3D_3)$	$\frac{2}{3^{-}}$	$\begin{array}{c} 3132\\ 3226 \end{array}$	10	$9\\14$	11 16	$\frac{12}{21}$	$\frac{5}{4}$	3	$\frac{4}{5}$	$\frac{4}{7}$	$\frac{2}{3}$	$\frac{2}{3}$	$\frac{1}{2}$	$\begin{array}{c} 0\\ 9\end{array}$
$D_3(2^*D_3) \\ D_1(2^3D_1)$	$\frac{3}{1^{-}}$	3220 3231	8 7	$\frac{14}{2}$	10 0	$\frac{21}{51}$	4 1	$5 \\ 0$		17		3 0	2 1	9 4
$D_1(2^*D_1) \\ D_0(3^3P_0)$		3231				$\frac{51}{13}$		-	0		0	-		4 11
$D_0(3^3P_0) \\ D_2(3^3P_2)$	$\frac{0}{2^+}$		1	- 1	-		0	_	-	4	1	- 1	- 1	
$D_2(3^*P_2) \\ D_3(1^3G_3)$	$\frac{2}{3^{-}}$	$3352 \\ 3398$	$\frac{2}{5}$	$\frac{1}{2}$	$\begin{array}{c} 0 \\ 7 \end{array}$	$\frac{13}{15}$	$\begin{array}{c} 0 \\ 2 \end{array}$	$\begin{array}{c} 0 \\ 2 \end{array}$	$\begin{array}{c} 0 \\ 2 \end{array}$	$\frac{5}{5}$	$\begin{array}{c} 0 \\ 1 \end{array}$	1	1 1	61
$D_3(1 G_3) D_0(4^1S_0)$	0^{-}	3398 3465		2 1		$13 \\ 11$				-		1		
$D_0(4 S_0) \\ D_4(2^3F_4)$	4^+	3465 3466	$\overline{5}$	8	$\frac{4}{10}$	$11 \\ 12$	$\frac{-}{2}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{4}{4}$	$\frac{-}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\begin{array}{c} 0 \\ 4 \end{array}$
$D_4(2 \ F_4) \\ D_2(2^3 F_2)$	2^{+}	$3400 \\ 3490$	3	8 1	10	$\frac{12}{38}$	2 1	$\frac{3}{0}$	0 0	$\frac{4}{12}$	0	0	0	$\frac{4}{5}$
$D_2(2 F_2) \\ D_3(3^3D_3)$	$\frac{2}{3^{-}}$	$3490 \\ 3578$	$\frac{3}{2}$	1	0	38 6	0	0	0	$\frac{12}{2}$	0	0	1	$\frac{5}{2}$
$D_3(3 D_3) \\ D_0(4^3 P_0)$	0^+	3709	$\frac{2}{0}$	1	-	9	0		-	$\frac{2}{3}$	0		1	2 1
$D_0(4 P_0) \\ D_3(2^3G_3)$	$\frac{0}{3^{-}}$	3709	$\frac{0}{2}$	1	0	$\frac{9}{24}$	0	0	0	3 8	0	-0	0	1 3
$D_{3}(2 G_{3}) \\ D_{4}(3^{3}F_{4})$	$\frac{3}{4^+}$	3721 3788	2 1	1	0	$\frac{24}{3}$	0	0	0	0 1	0	0	0	3 1
$D_4(3 F_4) \ D_4(4^3 F_4)$	4^{+}	4085	0	0	0	$\frac{3}{2}$	0	0	0	1	0	0	0	0

• Unquenching of hadron models: we have constructed the formalism in an explicit way, also thanks to group th. tecniques.

During 2016, many applications to Jlab Physics e LHC_b physics,

Dark Matter

Jlab will be involved in Dark Matter Experiments and will need Theory support.

R.Cenni, P.Saracco, E.Santopinto