INFN-E-MAFLUNE,INFN-E-MAFI,INFN-E-ADS, UE-FREYA,UE-CHANDA,UE-SCINTILLA INFN-Energia

M. Osipenko¹, M. Ripani¹, G. Ricco¹, B. Caiffi³ M.Battaglieri¹, R. De Vita¹, E. Fanchini¹, F. Panza¹ G.Lomonaco³, D.Chersola³ In Collaboration with: M. Pillon⁴, D. Trucchi², G. Firpo⁵, S. Minutoli¹, S. Cerchi¹, G. Gariano¹, F. Gatti³, and D. Corsini³.

¹INFN Genova, ³CNR-ISM, ³Università di Genova ⁴ENEA di Frascati, ⁵Ansaldo Nucleare

Genoa, Italy

 Introduction 	Old Prot	otype	Upgrade		Conclusion '
INFN-E G	enova 20	15			
	Project	Start/End	Person	FTE	
	INFN-E		M.Osipenko	0.2	
			M.Ripani	0.1	
			G.Ricco ^A		
			B.Caiffi ^D	1.0	
			F.Panza	1.0	
			E.Fanchini	1.0	
			G.Lomonaco ^A	0.1	
			D.Chersola ^A	0.1	
	Total			3.6	
	UE-FREYA	16/03/11	M.Osipenko	0.1	
		29/02/16	M.Ripani	0.1	
	Total			0.2	
	UE-CHANDA	1/12/13	M.Ripani	0.2	
		30/11/17	M.Osipenko	0.1	
			P.Saracco	0.1	
			G.Ricco ^A		
			G.Lomonaco ^A	0.1	
			D.Chersola ^A	0.1	
	Total			0.6	
2 M. Osipenko	UE-ERASET	1/12/13	M.Ripani	0.1	
2 M. Osipenko	IINFIN		6 July 2015	IINF	N-Energia

UE-Scintilla

Project scope: Development of systems for the detection of radioactive sources and nuclear material Type: Collaborative project (FP7-SEC-2011-1.5-1) Duration: 36 months (11/2012 - 31/12/2014)

Funding: 3MEuro (total) / 300KEuro (INFN)

2014 Activity:

- Second detector pillar constructed, assembled and commissioned in Genova in 2014
- Full RPM system (2 pillars) successfully tested in the Benchmark campaign at JRC-Ispra in November 2014:
 - Detector performances comply or exceed the RPM international standards for gamma and neutron detection
 - Performances comparable or better than commercial systems tested in the same benchmark campaign
- Project completion 31/12/2014

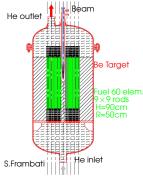
Perspective and Exploitation Plan

- Gamma source identification algorithm developed and under test
- International patent application submitted
- Contacts with private companies for possible exploitation established in coordination with Ansaldo Nucleare and INFN-CNTT

National Coordinator: R. De Vita Financial Officer: M. Pavan EU personnel: E. Fanchini, V. Vigo

Development of a Radiation Portal Monitor based on Gd-lined plastic scintillator for gamma and neutron detection

- S.M. Carturan et al., EPJ Plus, Vol.129, n.10, (2014)
- A. Alemberti et al., ICATPP proceeding Vol.8, Chapt. 105, pp.659-663 (2014)
- E. Fanchini, Proceeding submitted for the 3He alternatives for international safeguards workshop (2014)
- E. Fanchini, Proceeding submitted to IEE TNS for the ANIMMA 2015 conference (2015)


Detector development in collaboration with Ansaldo Nucleare GRAZIE a tutti i Servizi per il supporto durante tutte le fasi del progetto

UE-CHANDA and INFN-E-ADS

- WP12 Task 12.4: "New infrastructure for studies of transmutation and fast system concepts", (INFN, Ansaldo Nucleare).
- Scope: optimization of a subcritical system to perform integral measurements on transmutation processes.
- Methodology: burn-up simulations based on Monte Carlo codes (MCNP/MCB) applied to different fuels and test rods (F.Panza).
- The low power ADS, proposed for LNL, represents an attractive intermediate step to fill the gap between existing and future facilities (Myrrha,EFIT).

UE-FREYA (INFN, ENEA, Ansaldo)

Fast reactor neutron spectrum produces less wastes. In development phase spectrum has to be measured. ADS, like UE-FREYA FP7 Project (SCK-CEN, Mol, Belgium), requires measurements of transients (μ s scale).

- WP1: ADS on-line reactivity monitoring methodologies,
 - in PNS, Source Jerk, Beam Trip methods a fast neutron spectrometer allows to sort neutron transients in groups.
- WP2: Subcritical configurations for design and licensing of MYRRHA/FASTEF.
 - direct measurement of neutron spectrum improves knowledge of burn-out.

6 July 2015

NFN-Energia

Old Prototyp

Upgrade

Diamond Detectors

Comparison with Fission Chamber:

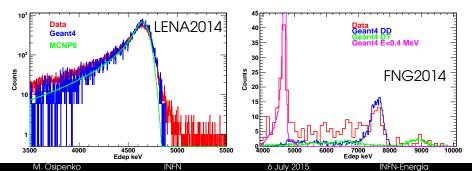
	Fission	Diamond
	Chamber	Detector
Charge Mobility	0.3-0.4 cm ² /V/s	2000 cm ² /V/s
Charge Collection time	5-7 μ s	2-10 ns
Counting Rate	20 kHz	10 MHz
Size	4×10 mm ²	2×2 mm ²
Converter	U,Np,Pu,Th	H, Li, B
Efficiency at 0.5 MeV	1.1 barn (²³⁵ U)	0.4 barn (⁶ Li)
Amount	2 × 10 ¹⁸ - 10 ²¹ a	5 × 10 ¹⁶ - 10 ¹⁸ a
Signal Size	200 fC	60 fC (⁶ Li)
Spectroscopy	unfolding	direct (⁶ Li)
Energy Range	entire	<7 MeV (⁶ Li)

Comparison with Silicon detector:

- factor ×4-10 lower radiation damage ($\sigma_{C(n,n')} \times Z_C^2 \rho_C$),
- no intrinsic noise at high temperature ($E_g = 5.5 \text{ eV}$).

5	M.	Osipenka	2

6 July 2015

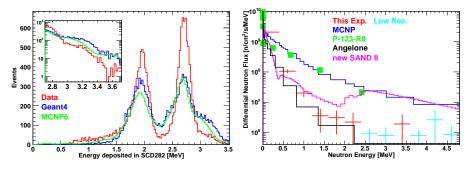

INFN-Energia

Old Prototype

Upgrade

Calibration of Prototype

- Experiment at TRIGA of LENA (Pavia) to determine response to thermal (graphite column) neutrons:
 - near fission chamber normalization,
 - absolute amount of 6 Li (40 nm thick $\times 2.2$ mm $\times 3$ mm).
- Experiment at FNG of ENEA (Frascati) to determine response to fast (DD-fusion, 90°) neutrons:
 - ¹¹⁵In activation foil normalization,
 - agreement with Geant4 extrapolation for 2.5 MeV neutrons within 11% (stat.) and 20% (sys.).



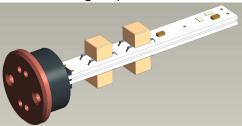
Old Prototype

Upgrade

Neutron Flux in Fast Reactor

- 6m runtime at 5 W reactor power, trigger rate 44 Hz.
- Total measured flux \sim 90% of expected from MCNP simulations, normalized (in different point) to activation foil measurement at 3.5 kW reactor power,
- neutron flux at $E_n > 0.5$ MeV 5-10 times lower,
- extrapolation factor due to position difference ×0.82,
- extrapolation factor due to power difference ×0.0014.

Old Prototyp


Upgrade

6 July 2015

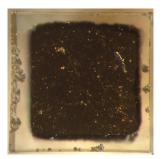
New Sandwich Assembly

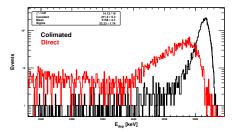
- E6 300 μ m electronic grade single crystal diamonds.
- Contacts by Daniele Trucchi (100 nm Au) needs reduction of material budget to improve resolution.
- New PCB, shield and housing design $D \sim 3$ cm (limited by components) needs reduction to < 1 cm,
- 10 m long RG174 cables (50 Ohm), separate HV cables (G.Ottonello).

PCB design by S. Cerchi

INFN

M. Osipenka


Old Prototyp


Upgrade

Conclusion

New Contacts

- first $2 \times 2 \text{ mm}^2$ 500 μm diamond with contacts by D. Trucchi glued to PCB,
- test with ²⁴¹Am α-source showed that detector is working, but has large dead area,
- resolution of 50-60 keV was observed, while resolution due to electronics noise using 3 m cable was 23 keV.

10 M. Osipenko

6 July 2015

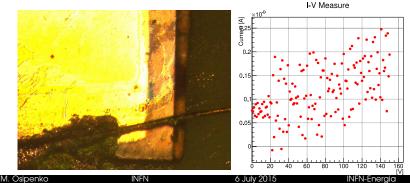
Old Prototype

Upgrade

LiF deposition

- 200 nm of LiF were deposited by D. Corsini,
- test was made on gold plated Si wafer to calibrate deposited LiF thickness, measured by Prof. M. Canepa on helixometer,
- Al mask was used to protect 0.2 mm wide frame for contact wirebonding,
- LiF thickness was measured by profilometer.

6 July 2015

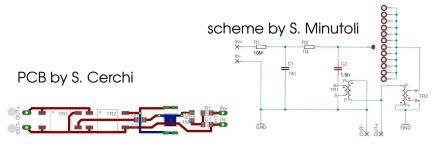

Old Prototype

Upgrade

Conclusion

Detector Bonding

- bonding was performed by G. Gariano,
- diamond detector was glued with its bottom contact to PCB pad by e-Solder 3025 conductive glue,
- 50 $\mu \rm m$ W gold plated wire was soldered to PCB and glued to the top contact,
- I vs. V characteristic was measured to check resistivity with Keithly 2410.


Old Prototype

Upgrade

Conclusion

New Readout

- signals from both sides of each diamond are collected, and preamplified ×4,
- overall signal strength improvement $\times 8$,
- old detectors with fast electronics (R.Cardarelli amplifier) had resolution of 100 keV,
- expected resolution of new detector 30 keV.

Results MAFI/MAFLUNE

- B. Califfi, "Neutron Shielding Assessment and Diagnostic in Tokamaks", PhD thesis Genoa University (2015),
- B. Caiffi et.al, "Characterization of scCVD diamond detectors with sources", NIM A754, 24 (2014),
- B. Caiffi et.el, "Analysis of the Response of CVD Diamond Detectors for UV and sX-Ray Plasma Diagnostics Installed at JET", Physics Procedia 62, 79 (2015),
- B. Caiffi et.al, "Proton recoil telescope based on diamond detectors for measurement of fusion neutrons", TNS (2015), arXiv:1505.06316,
- B. Caiffi et.al, "Dose Rate Analysis for TBM Port #16 after Shutdown", ITER_D_QZUA22 v1.0.
- B. Caiffi et.al, "Neutron shielding study of the DEMO upper vertical port", Eurofusion Deliverable PMI-5.3-04,
- M. Osipenko et.al, "Single Crystal Diamonds for Neutrons", EPJ.Plus 129, 268 (2014),
- M. Osipenko et.al, "Test of a prototype neutron spectrometer based on diamond detectors in a fast reactor", TNS (2015), arXiv:1505.06314,
- M. Osipenko et.al, "Neutron spectrometer for fast nuclear reactors", NIM (2015), arXiv:1505.06654,
- M. Osipenko et.al, "Comparison of Fast Amplifiers for Diamond Detectors", INFN-13-17-GE, airXiv:1310.1000 (2013),
- A. De Franco, "Misure di Flusso in Reattore ADS Veloce", MD thesis Genoa University (2012).

Results ADS/FREYA/CHANDA

- G.Mila et al., "Pulsed neutron and source jerk experiments for reactivity assessments in deep subcritical configuration", PHYSOR 2014,
- P. Saracco et al., "A preliminary study of an improved area method, adapted to short time transients in subcritical systems.", PHYSOR 2014,
- S.Dulla et al., "Reflector effects on the kinetic response in subcritical systems", ANS MC2015,
- G.Ricco et al., "An intrinsically safe facility for forefront research and training on nuclear technologies", EPJ Plus, 129: 64 (2014),
- M.Osipenko et al., "Measurement of neutron yield by 62 MeV proton beam on a thick beryllium target", NIM A723, 8 (2013),
- R.Alba et al., "Measurement of neutron yield by 62 MeV proton beam on a thick Beryllium target", J.Phys.Conf.Ser. 420, 012162 (2013),
- M.Osipenko et al., "Comprehensive measurement of neutron yield produced by 62 MeV protons on Beryllium target", IEEE Advancements in Nuclear Instrumentation Measurement Methods and their Applications, 1293, 1 (2013),
- M.Schillaci et al., "Complete determination of neutron yield from 62 MeV protons on ⁹Be for the design of a low-power ADS", EPJ Web of Conferences 66, 10015 (2014),
- C.Viberti, "Progetto di massima di un reattore di ricerca sotto-critico veloce sostenuto da un acceleratore di protoni da 70 MeV", MD thesis Genoa University (2010).
- A.Celentano, "Produzione di neutroni da bersaglio spesso", MD thesis Genoa University (2010).

M. Osipenko

Old Prototyp

Upgrade

Conclusion *

INFN-E Genova 2016

Project	Start/End	Person	FTE
INFN-E		M.Osipenko	0.2
		M.Ripani	0.2
		G.Ricco ^A	
		F.Panza	1.0
		G.Lomonaco ^A	0.2
		D.Chersola ^A	0.2
Total			1.8
UE-FREYA	16/03/11	M.Osipenko	0.05
	29/02/16	M.Ripani	0.05
Total			0.1
UE-CHANDA	1/12/13	M.Ripani	0.2
	30/11/17	M.Osipenko	0.1
		PSaracco	0.1
		G.Ricco ^A	
Total			0.4

Introduction	Old Prototype	Upgrade	Conclusion *
Richieste Ser	vizi		

Servizio	Richieste	Obiettivi
	(m.u.)	
Elettronica	2+2(S.Minutoli)	sviluppo PCB det., amp. readout
	+2(G.Ottonello)	montaggio, cavi
Progettazione	2	maschere evap., involucro det.
Officina	2	maschere evap., involucro det.
Calcolo	2	calc. parallelo (Intel PHI)

×