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CPT: introduction 

CPT theorem : 
                          
 
 
 
 
 
 
 
 
Exact CPT invariance holds for any quantum field theory (like the Standard Model) 
formulated on flat space-time which assumes: 
(1)  Lorentz invariance  (2) Locality (3) Unitarity (i.e. conservation of probability). 
Testing the validity of the CPT symmetry probes the most fundamental assumptions 
of our present understanding of particles and their interactions. 
 

The three discrete symmetries of QM, C (charge conjugation: q ! -q),   
P (parity: x ! -x), and  T (time reversal: t ! -t) are known to be violated in nature 
both singly and in pairs. Only CPT appears to be an exact symmetry of nature. 

2 

J. Schwinger 
   (1951) G. Lüders 

   (1954) 

R. Jost 
 (1957) 

W. Pauli 
 (1952) J. Bell 

(1955) 



A. Di Domenico  FQT 2015 - September 23-25, 2015 LNF  
 
 
 

The three discrete symmetries of QM, C (charge conjugation: q ! -q),   
P (parity: x ! -x), and  T (time reversal: t ! -t) are known to be violated in nature 
both singly and in pairs. Only CPT appears to be an exact symmetry of nature. 
 
Intuitive justification of CPT symmetry [1]: 
For an even-dimensional space =>  reflection of all axes is equivalent to a rotation 
e.g.  in 2-dim. space: reflection of 2 axes = rotation of π around the origin 
 
 
 
 
 
 
 
In 4-dimensional pseudo-euclidean space-time PT reflection is NOT equivalent to 
a rotation. Time coordinate is not exactly equivalent to space coordinate. Charge 
conjugation is also needed to change sign to e.g. 4-vector current jµ. (or axial 4-v).
CPT (and not PT) is equivalent to a rotation in the 4-dimensional space-time  

CPT: introduction 

[1] Khriplovich, I.B., Lamoreaux, S.K.: CP Violation Without Strangeness.  
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huge effort in the last decades to study and shed light on QG phenomenology 
⇒  Phenomenological CPTV parameters to be constrained by experiments 
 

Consequences of CPT symmetry: equality of masses, lifetimes, |q| and |µ| 
of a particle and its anti-particle. 

Neutral meson systems offer unique possibilities to test CPT invariance; 
e.g. taking as figure of merit the fractional difference between the masses of 
a particle and its anti-particle: 

 

 
181000
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1410 00
−<− BBB mmm
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neutral K system 

neutral B system 

proton- anti-proton 

CPT: introduction 
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Extension of CPT theorem to a theory of quantum gravity far from obvious. 
(e.g. CPT violation appears in several QG models) 

Other interesting CPT tests: e.g. the study of anti-hydrogen atoms, etc..  
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The neutral kaon: a two-level quantum system 

Since the first observation of a K0 (V-
particle) in 1947, several phenomena 
observed and several tests performed: 
•  strangeness oscillations 
•  regeneration 
•  CP violation 
•  Direct CP violation 
•  precise CPT tests  
•  … 
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One of the most intriguing physical systems in Nature. 
 

T. D. Lee 

Neutral K mesons are a unique physical system which appears to  
be created by nature to demonstrate, in the most impressive manner,  
a number of spectacular phenomena.   
........ 
If the K mesons did not exist, they should have been invented  
“on purpose” in order to teach students the principles of  
quantum mechanics. Lev B. Okun 



A. Di Domenico  FQT 2015 - September 23-25, 2015 LNF  
 
 
 

The time evolution of a two-component state vector                 
in the               space is given by  
(Wigner-Weisskopf approximation): 
 

€ 

Ψ = a K 0 + b K 0

€ 

i ∂
∂t
Ψ t( ) =HΨ t( )

H is the effective hamiltonian (non-hermitian), decomposed into a Hermitian  
part (mass matrix M) and an anti-Hermitian part (i/2 decay matrix Γ) : 

The neutral kaon system: introduction 

Diagonalizing the effective Hamiltonian: 

€ 

λS,L = mS,L −
i
2
ΓS,L

€ 

KS,L t( ) = e− iλS ,L t KS,L 0( )

€ 

KS,L =
1

2 1+ εS,L( )
1+εS,L( ) K 0 ± 1−εS,L( ) K 0[ ]

=
1

1+ εS,L( )
K1,2 +εS,L K2,1[ ]

eigenvalues 
eigenstates 

τS ~ 90 ps τL ~ 51 ns 

€ 

H =M −
i
2
Γ =

m11 m12
m21 m22

$ 

% 
& 

' 

( 
) −

i
2
Γ11 Γ12
Γ21 Γ22

$ 

% 
& 

' 

( 
) 

small CP impurity ~2 x 10-3 

|K1,2> are 
CP=±1 states 
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KL →ππ violates CP

€ 

KS KL ≅εS
∗ +εL ≠ 0
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€ 

δ =
H11 −H22

2 λS − λL( )
=
1
2

m
K 0
−m

K 0( ) − i 2( ) ΓK 0
−Γ

K 0( )
Δm + iΔΓ/2

 

 ε LS δε ±=,

€ 

Δm = mL −mS    ,      ΔΓ = ΓS −ΓL
Δm = 3.5 ×10−15  GeV
ΔΓ≈ ΓS ≈ 2Δm = 7 ×10−15  GeV

ε =
H12 −H21

2 λS −λL( )
=
−iℑM12 −ℑΓ12 2
Δm+ iΔΓ / 2

 

•  δ ≠ 0 implies CPT violation  
•  ε ≠ 0 implies T violation 
•  ε ≠ 0 or δ ≠ 0 implies CP violation 

012 =Γℑ(with a phase convention               ) 

CPT violation:

CP violation:

CPT violation: standard picture 

T violation:
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<m> 
(GeV) 

 

Δm 
(GeV) 

<Γ>
(GeV) 

ΔΓ/2 
(GeV) 

K0 0.5 3x10-15 3x10-15 3x10-15 

D0 

 
1.9 6x10-15 2x10-12 1x10-14 

B0
d

 5.3 3x10-13 4x10-13 O(10-15) 
(SM prediction) 

B0
s
 

 
5.4 1x10-11 4x10-13 3x10-14 

neutral kaons vs other oscillating meson systems  
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“Standard” CPT tests 

10 
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CPT test at CPLEAR 

Test of CPT in the time evolution of  
neutral kaons using the semileptonic  
asymmetry 

ℜδ   =  (0.30 ± 0.33 ± 0.06) × 10-3

CPLEAR PLB444 (1998) 52 

ACPT (τ ) =
P[K

0
(0)→ K

0
(τ )]−P[K 0 (0)→ K 0 (τ )]

P[K
0
(0)→ K

0
(τ )]+P[K 0 (0)→ K 0 (τ )]

ACPT (τ >> τ S ) = 8ℜδ

K0 e+ 
π-

ν
τ=0 τ 

K0 

survival probabilities 
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The Bell-Steinberger relationship 

( ) ∑ +=⎟
⎠

⎞
⎜
⎝

⎛−
= f

LLSS
t

KTfaKTfatK
dt
d 2

0

2

LLSS KaKaK +=Unitarity constraint:   

All observables 
quantities 

KL KS = 2 ℜε + iℑδ( ) =
f T KS

f
∑ f T KL

∗

i λS −λL
∗( )

Sum over all possible decay products 
(sum over few decay products for kaons;  
 many for B and D mesons => not easy to evaluate) 

yields two trivial relations: 
 
 
and a not trivial one, i.e. the B-S relationship: 
 
 

ΓS,L = f T KS,L
2

f
∑

J. Bell J. Steinberger (1965) 
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€ 

ΓK 0 −ΓK 0( )   
10−18GeV( )

Combining Reδ and Imδ results 

€ 

δ =
1
2

mK 0 −mK 0( ) − i 2( ) ΓK 0 −ΓK 0( )
Δm + iΔΓ/2

 

Assuming                                , i.e. no CPT viol. in decay: ( ) 000 =− KK ΓΓ

m
K 0 −mK 0 < 4.0×10−19   GeV  at 95% c.l. 

“Standard” CPT test 
K0 e+ 

π-

ν
τ=0 τ

measuring the time evolution of a neutral kaon beam into 
semileptonic decays: ℜδ   =  (0.30 ± 0.33 ± 0.06) × 10-3

CPLEAR   
PLB444 (1998) 52 

 Im δ =(-0.7 ± 1.4) × 10-5

PDG fit (2014)  

2ℑδ =ℑ KL KS
"# $%=ℑ

f T KS
f
∑ f T KL

∗

i λS −λL
∗( )

"

#

)
)
)

$

%

*
*
*

using the unitarity constraint  
(Bell-Steinberger relation) 
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– 5–

Figure 1: Top: allowed region at 68% and 95%
C.L. in the ℜ(ϵ), ℑ(δ) plane. Bottom: allowed
region at 68% and 95% C.L. in the ∆M, ∆Γ
plane.

August 21, 2014 13:17

€ 

mK 0 −mK 0( )   10−18  GeV( )
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Entangled neutral kaon pairs 

14 
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•  e+e- → φ      σφ∼3 µb 
  W = mφ = 1019.4 MeV 
•  BR(φ → K0K0)   ~ 34% 
•  ~106  neutral kaon pairs per 
pb-1 produced in an 
antisymmetric quantum state  
with JPC = 1--  : 

Neutral kaons at a φ-factory 

  

€ 

i =
1
2

K 0  p ( ) K 0 −  p ( ) − K 0  p ( ) K 0 −
 p ( )[ ]

=
N
2

KS
 p ( ) KL −

 p ( ) − KL
 p ( ) KS −

 p ( )[ ]pK = 110 MeV/c      
λS = 6 mm     λL = 3.5 m 

Production of the vector meson φ  
in e+e- annihilations:

KL,S 

KS,L 
e- e+ φ

€ 

N = 1+ εS
2( ) 1+ εL

2( ) 1−εSεL( ) ≅1
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Total KLOE  ∫L dt ~ 2.5 fb-1 
(2001 - 05) →  ~2.5×109  KSKL pairs 

Integrated luminosity  (KLOE) 

The KLOE detector at the Frascati φ-factory DAΦNE 

DAFNE  
collider 

KLOE detector 

16 
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Total KLOE  ∫L dt ~ 2.5 fb-1 
(2001 - 05) →  ~2.5×109  KSKL pairs 

Integrated luminosity  (KLOE) 

The KLOE detector at the Frascati φ-factory DAΦNE 

Lead/scintillating fiber calorimeter 
 drift chamber 
4 m diameter × 3.3 m length 
helium based gas mixture  

KLOE detector 
DAFNE  
collider 

17 
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Direct CPT symmetry test in transitions 

18 
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• EPR correlations at a φ-factory (or B-factory) can be exploited to study other 
transitions involving also orthogonal “CP states” K+ and K- 

φ

t1 

      3π0 
K0

 
   π+l-ν 
 

t1 

K0
 

Δt=t2-t1 

K-
 

  

€ 

i =
1
2

K 0 ! p ( ) K 0 − ! p ( ) − K 0 ! p ( ) K 0 −
! p ( )[ ]

=
1
2

K+

! p ( ) K− −
! p ( ) − K−

! p ( ) K+ −
! p ( )[ ]

• decay as filtering  
measurement 
• entanglement -> 
preparation of state 

19 

Direct test of CPT symmetry in neutral kaon transitions 

K+ = K1   (CP = +1)

K− = K2   (CP = −1)
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K 0 →K−
reference process 

• decay as filtering  
measurement 
• entanglement -> 
preparation of state 
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Direct test of CPT symmetry in neutral kaon transitions 

K+ = K1   (CP = +1)

K− = K2   (CP = −1)
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Direct test of CPT symmetry in neutral kaon transitions 

φ

t1 

π+l-ν 
K+ 

    ππ 

t1 

K- 

Δt=t2-t1 

K0 

K+ = K1   (CP = +1)

K− = K2   (CP = −1)
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• EPR correlations at a φ-factory (or B-factory) can be exploited to study other 
transitions involving also orthogonal “CP states” K+ and K- 
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K 0 →K−

K− → K
0

reference process 

CPT-conjugated process 

• decay as filtering  
measurement 
• entanglement -> 
preparation of state 
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Direct test of CPT symmetry in neutral kaon transitions 

φ

t1 

π+l-ν 
K+ 

    ππ 

t1 

K- 

Δt=t2-t1 

K0 

K+ = K1   (CP = +1)

K− = K2   (CP = −1)
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measurement 
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preparation of state 
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Direct test of CPT symmetry in neutral kaon transitions 

φ

t1 

π+l-ν 
K+ 

    ππ 

t1 

K- 

Δt=t2-t1 

K0 

K+ = K1   (CP = +1)

K− = K2   (CP = −1)

Note: CP and T conjugated process 

€ 

K 0
→K− K− → K 0
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Any deviation from Ri,CPT=1 constitutes a violation of CPT-symmetry 

One can define the following ratios of probabilities: 

CPT symmetry test 

24 

Direct test of CPT symmetry in neutral kaon transitions 

Author's personal copy

J. Bernabeu et al. / Nuclear Physics B 868 (2013) 102–119 107

Table 2
Possible comparisons between CP-conjugated transitions and the associated
time-ordered decay products in the experimental φ-factory scheme.

Reference CP-conjugate

Transition Decay products Transition Decay products

K0 → K+ (ℓ−,ππ) K̄0 → K+ (ℓ+,ππ)

K0 → K− (ℓ−,3π0) K̄0 → K− (ℓ+,3π0)

K̄0 → K+ (ℓ+,ππ) K0 → K+ (ℓ−,ππ)

K̄0 → K− (ℓ+,3π0) K0 → K− (ℓ−,3π0)

Table 3
Possible comparisons between CPT -conjugated transitions and the associated
time-ordered decay products in the experimental φ-factory scheme.

Reference CPT -conjugate

Transition Decay products Transition Decay products

K0 → K+ (ℓ−,ππ) K+ → K̄0 (3π0,ℓ−)

K0 → K− (ℓ−,3π0) K− → K̄0 (ππ,ℓ−)

K̄0 → K+ (ℓ+,ππ) K+ → K0 (3π0,ℓ+)

K̄0 → K− (ℓ+,3π0) K− → K0 (ππ,ℓ+)

R3($t) = P
[
K̄0(0) → K+($t)

]
/P

[
K+(0) → K̄0($t)

]
,

R4($t) = P
[
K̄0(0) → K−($t)

]
/P

[
K−(0) → K̄0($t)

]
. (15)

The measurement of any deviation from the prediction

R1($t) = R2($t) = R3($t) = R4($t) = 1 (16)

imposed by T invariance is a signal of T violation. This outcome will be highly rewarding as a
model-independent and a direct observation of T violation.

If we express two generic orthogonal bases {KX, K̄X} and {KY, K̄Y}, which in our case corre-
spond to {K0, K̄0} or {K+,K−}, as follows:

|KX⟩ = XS |KS⟩ + XL|KL⟩, (17)

|K̄X⟩ = X̄S |KS⟩ + X̄L|KL⟩, (18)

|KY⟩ = YS |KS⟩ + YL|KL⟩, (19)

|K̄Y⟩ = ȲS |KS⟩ + ȲL|KL⟩, (20)

the generic quantum mechanical expression for the probabilities entering in Eqs. (15) is given
by

P
[
KX(0) → KY($t)

]
=

∣∣〈KY
∣∣KX($t)

〉∣∣2

= 1
|detY |2

∣∣e−iλS$tXSȲL − e−iλL$tXLȲS

∣∣2

= 1
|detY |2

{
e−ΓS$t |XSȲL|2 + e−ΓL$t |XLȲS |2

− 2e− (ΓS+ΓL)
2 $tℜ

(
ei$m$tXSȲLX⋆

LȲ ⋆
S

)}
, (21)

of the pair is totally antisymmetric and can be written in terms of any pair of orthogonal
states, e.g. K0 and K̄0, or K

+

and K�, as:

|ii = 1p
2
{|K0i|K̄0i � |K̄0i|K0i} =

1p
2
{|K

+

i|K�i � |K�i|K+

i} . (3.1)

Thus, exploiting the perfect anticorrelation of the state implied by eq. (3.1), which remains
unaltered until one of the two kaons decays, it is possible to have a “flavor-tag”or a “CP-tag”,
i.e. to infer the flavor (K0 or K̄0) or the CP (K

+

or K�) state of the still alive kaon by
observing a specific flavor decay1 (`� or `

+) or CP decay (⇡⇡ or 3⇡0) of the other (and
first decaying) kaon in the pair. For instance, the transition K0 ! K

+

and its associated
probability P

⇥
K0(0) ! K

+

(�t)
⇤

corresponds to the observation of a `

� decay at a proper
time t

1

of the opposite K̄0 and a ⇡⇡ decay at a later proper time t

2

= t

1

+�t, with �t > 0.
In other words, the `

� decay of a kaon on one side prepares, in the quantum mechanical
sense, the opposite (if undecayed) kaon in the state |K0i at a starting time t = 0. The |K0i
state freely evolves in time until its ⇡⇡ decay filters it in the state |K

+

i at a time t = �t.
In this way one can experimentally access all the four reference transitions listed in

Table 1, and their T , CP and CPT conjugated transitions. It can be easily checked that
the three conjugated transitions correspond to different categories of events; therefore the
comparisons between reference vs conjugated transitions correspond to independent T , CP
and CPT tests.

Reference T -conjug. CP-conjug. CPT -conjug.
K0 ! K

+

K
+

! K0 K̄0 ! K
+

K
+

! K̄0

K0 ! K� K� ! K0 K̄0 ! K� K� ! K̄0

K̄0 ! K
+

K
+

! K̄0 K0 ! K
+

K
+

! K0

K̄0 ! K� K� ! K̄0 K0 ! K� K� ! K0

Table 1. Scheme of possible reference transitions and their associated T , CP or CPT conjugated
processes accessible at a �-factory.

For the CPT symmetry test one can define the following ratios of probabilities:

R

1,CPT (�t) = P

⇥
K

+

(0) ! K̄0(�t)
⇤
/P

⇥
K0(0) ! K

+

(�t)
⇤

R

2,CPT (�t) = P

⇥
K0(0) ! K�(�t)

⇤
/P

⇥
K�(0) ! K̄0(�t)

⇤

R

3,CPT (�t) = P

⇥
K

+

(0) ! K0(�t)
⇤
/P

⇥
K̄0(0) ! K

+

(�t)
⇤

R

4,CPT (�t) = P

⇥
K̄0(0) ! K�(�t)

⇤
/P

⇥
K�(0) ! K0(�t)

⇤
. (3.2)

The measurement of any deviation from the prediction Ri,CPT (�t) = 1 imposed by CPT
invariance is a signal of CPT violation.
It is worth noting that for �t = 0:

R

1,CPT (0) = R

2,CPT (0) = R

3,CPT (0) = R

4,CPT (0) = 1 (3.3)
1
In the following the semileptonic decays ⇡+`�⌫ or ⇡�`+⌫̄ are denoted as `� and `+, respectively.

– 4 –
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Direct test of CPT symmetry in neutral kaon transitions 
•  It would be possible for the first time to directly test the CPT 

symmetry in transition processes between meson states, 
rather than comparing masses, lifetimes, or other intrinsic 
properties of particle and anti-particle states. 

 
 

•  Possible spurious effects induced by CP violation in the decay 
and/or a violation of the ∆S = ∆Q rule have been shown to be 
well under control.  

•  The proposed CPT test is model independent and fully robust. 
It might shed light on possible new CPT violating mechanisms. 

•  KLOE-2 could reach a statistical sensitivity of O(10−3) on the 
newly proposed observable quantities.  

J. Bernabeu, A.D.D., P. Villanueva: arXiv:1509.02000 [hep-ph] accepted on JHEP 
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Test of Quantum Coherence 
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EPR correlations in entangled neutral kaon pairs from φ
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EPR correlations in entangled neutral kaon pairs from φ
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EPR correlations in entangled neutral kaon pairs from φ

Δt=|t1-t2| 
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EPR correlations in entangled neutral kaon pairs from φ

Interference effects are a 
key feature of QM,  
“the only mystery” 
according to Feynman 
 
=> Experimental test 

Δt=|t1-t2| 
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EPR correlations in entangled neutral kaon pairs from φ

€ 

ζ00 > 0

000 =ζζ decoherence parameter (QM predicts ζ=0)
 
 

Δt=|t1-t2| 
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EPR correlations in entangled neutral kaon pairs from φ

ζ decoherence parameter (QM predicts ζ=0)
Most precise test of quantum coherence  
in an entangled system   
KLOE result: 
 
 

€ 

ζ00 = 1.4 ± 9.5STAT ± 3.8SYST( ) ×10−7

FP40 (2010) 852  PLB 642(2006) 315 L=1.5 fb-1 : 

terms ζ00/|ε|2  with CPV |ε|2 ∼ 10-6 => high sensitivity to ζ00  
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EPR correlations in entangled neutral kaon pairs from φ

ζ decoherence parameter (QM predicts ζ=0)
Most precise test of quantum coherence  
in an entangled system   
KLOE result: 
 
 

€ 
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Search for decoherence and CPT violation effects 
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Decoherence and CPT violation 
Possible decoherence due quantum gravity effects (BH evaporation)  
(apparent loss of unitarity): 
Black hole information loss paradox  =>  
Possible decoherence near a black hole. 

[1] Hawking, Comm.Math.Phys.87 (1982) 395; [2] Wald, PR D21 (1980) 2742;[3] Ellis et. al, NP B241 (1984) 381; 
Ellis, Mavromatos et al. PRD53 (1996)3846; Handbook on kaon interferometry [hep-ph/0607322], M. Arzano PRD90 
(2014) 024016 
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S. Hawking (1975) 

Hawking [1] suggested that at a microscopic level, in a quantum gravity picture,  
non-trivial space-time fluctuations (generically space-time foam) could give rise  
to decoherence effects, which would necessarily entail a violation of CPT [2].  
 

Modified Liouville – von Neumann equation for the density matrix of the kaon system 
with 3 new CPTV parameters α,β,γ [3]: 

 

 
!ρ t( ) = −iHρ + iρH +

QM
! "## $## + L ρ;α,β,γ( ) extra term inducing 

decoherence: 
pure state => mixed state 

(“like candy rolling  
on the tongue”  
by J. Wheeler ) 
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[1] Hawking, Comm.Math.Phys.87 (1982) 395; [2] Wald, PR D21 (1980) 2742;[3] Ellis et. al, NP B241 (1984) 381; 
Ellis, Mavromatos et al. PRD53 (1996)3846; Handbook on kaon interferometry [hep-ph/0607322], M. Arzano PRD90 
(2014) 024016 
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Hawking [1] suggested that at a microscopic level, in a quantum gravity picture,  
non-trivial space-time fluctuations (generically space-time foam) could give rise  
to decoherence effects, which would necessarily entail a violation of CPT [2].  
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[1] Hawking, Comm.Math.Phys.87 (1982) 395; [2] Wald, PR D21 (1980) 2742;[3] Ellis et. al, NP B241 (1984) 381; 
Ellis, Mavromatos et al. PRD53 (1996)3846; Handbook on kaon interferometry [hep-ph/0607322], M. Arzano PRD90 
(2014) 024016 
 

 

 

at most: 



A. Di Domenico  FQT 2015 - September 23-25, 2015 LNF  
 
 
 

 
 

φ →KSKL→π+π- π+π- : decoherence and CPT violation

The fit with I(π+π-,π+π-;Δt,γ) gives: 

 
In the complete positivity hypothesis   
α = γ      ,     β = 0       
=>  only one independent parameter: γ

CPLEAR 

€ 

α = −0.5 ± 2.8( ) ×10−17  GeV
β = 2.5 ± 2.3( ) ×10−19  GeV
γ = 1.1± 2.5( ) ×10−21  GeV

 PLB 364, 239 (1999) 

Study of time evolution of single kaons  
decaying in π+π- and semileptonic final state 

KLOE result     L=1.5 fb-1  

€ 

γ = 0.7 ±1.2STAT ± 0.3SYST( ) ×10−21  GeV
PLB 642(2006) 315 

single 
kaons 

entangled 
kaons 

Found. Phys. 40 (2010) 852  
40 

high sensitivity due to 
 Δλ and CPV 
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Future perspectives 

41 
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Physics program  
(see EPJC 68 (2010) 619-681) 
•  Neutral kaon interferometry, CPT 
symmetry & QM tests 
•  Kaon physics, CKM, LFV, rare KS decays 
•  η,η’ physics 
•  Light scalars, γγ physics 
•  Hadron cross section at low energy, aµ 
•  Dark forces: search for light U boson 

KLOE-2 at upgraded DAΦNE  

Detector upgrade: 
•  γγ tagging system 
•  inner tracker 
•  small angle and quad calorimeters 
•  FEE maintenance and upgrade 
•  Computing and networking update 
•  etc.. (Trigger, software, …) 

DAΦNE upgraded in luminosity: 
-  a new scheme of the interaction region has been implemented  

(crabbed waist scheme) 

KLOE-2 experiment:  
-     extend the KLOE physics program at DAΦNE upgraded in luminosity  
-  goal: to collect L > 5 fb−1 of integrated luminosity in the next 2-3 years 
-     Data taking (started on Nov. 2014) and commissioning in progress 
     ~ 1 fb-1 delivered up to now 
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Prospects for KLOE-2 
Param. Present best published 

measurement 
KLOE-2 (IT) 
L=5 fb-1 (stat.) 

KLOE-2 (IT) 
L=10 fb-1  (stat.) 

ζ00 (0.1 ± 1.0) × 10-6 ± 0.26 × 10-6 ± 0.18 × 10-6 

ζSL (0.3 ± 1.9) × 10-2 ± 0.49 × 10-2 ± 0.35 × 10-2 

α (-0.5 ± 2.8) × 10-17 GeV ± 5.0 × 10-17 GeV ± 3.5 × 10-17 GeV 

β (2.5 ± 2.3) × 10-19 GeV ± 0.50 × 10-19 GeV ± 0.35 × 10-19 GeV 
γ (1.1 ± 2.5) × 10-21 GeV 

compl. pos. hyp.  
(0.7 ± 1.2) × 10-21 GeV 

± 0.75 × 10-21 GeV 
compl. pos. hyp. 

± 0.33 × 10-21 GeV 

± 0.53 × 10-21 GeV 
compl. pos. hyp. 

± 0.23 × 10-21 GeV 

Re(ω) (-1.6 ± 2.6) × 10-4 ± 0.70 × 10-4 ± 0.49 × 10-4 

Im(ω) (-1.7 ± 3.4) × 10-4 ± 0.86 × 10-4 ± 0.61 × 10-4 

Δa0 (-6.0 ± 8.3) × 10-18 GeV ± 2.2 × 10-18 GeV ± 1.6 × 10-18 GeV 
ΔaZ (3.1 ± 1.8) × 10-18 GeV ± 0.50 × 10-18 GeV ± 0.35 × 10-18 GeV 
ΔaX (0.9 ± 1.6) × 10-18 GeV ± 0.44 × 10-18 GeV ± 0.31 × 10-18 GeV 
ΔaY (-2.0 ± 1.6) × 10-18 GeV ± 0.44 × 10-18 GeV ± 0.31 × 10-18 GeV 
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Conclusions  
• The entangled neutral kaon system at a φ-factory is an excellent laboratory for the 
study of CPT symmetry, discrete symmetries in general, and the basic principles of 
Quantum Mechanics; 

• Several parameters related to possible  
• CPT violation 
• Decoherence 
• Decoherence and CPT violation 
• CPT violation and Lorentz symmetry breaking 

 have been measured at KLOE, in same cases with a precision reaching the 
interesting Planck’s scale region; 

• All results are consistent with no CPT symmetry violation and no decoherence 
 
• Neutral kaon interferometry, CPT symmetry and QM tests are one of the main 
issues of the KLOE-2 physics program. (G. Amelino-Camelia et al. EPJC 68 (2010) 619-681) 

• The precision of several tests could be improved by about one order of magnitude 

• KLOE-2 could also test CPT symmetry in transition processes for the first time 
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