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Foundations of quantum mechanics

Statistical structure of quantum theory
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Single particle statistical experiment
State as equivalence class of preparation procedures
⇢ 2 T (H) normed space with kAk1 = Tr |A|
Observable as equivalence class of registration procedures
B 2 B(H) normed space with kAk = supk�k=1 kA�k
Statistics of experiment

µB
⇢ (M) = Tr ⇢EB(M)

Quantum mechanics as a theory of probability



Quantum information

Quantum systems as information carriers
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Quantum information and communication standpoint
Relevance of general state transformations
Relevance of possibly detrimental noise and decoherence
Quantum systems unavoidably
linked to a macroscopic background



Open quantum systems

Quantum systems as relevant degrees of freedom
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Reduced state System observable

Open quantum system standpoint
Relevance of general state transformations
Relevance of noise and decoherence
Quantum systems unavoidably
linked to a macroscopic background
Measurement interaction as archetype



Modifications of quantum mechanics

Statistical structure of quantum theory
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Modification of Schr

¨

odinger time evolution

to solve measurement problem

Single particle statistical experiment
Statistics of experiment µx̂

⇢(M) = Tr ⇢Ex̂(M)

Quantum mechanics as a theory of probability



Open quantum systems

Quantum system interacting with environment
[Davies, 1976; Holevo, 2001; Breuer & Petruccione, 2002]

Environment

Open system

Interaction HI

Hilbert space HE

Hamiltonian HE

Environment state ⇢E

Hilbert space HS

Hamiltonian HS

System state ⇢S

Bipartite setting H 2 L(HS ⌦ HE) ⇢SE 2 T (HS ⌦ HE)
System observables only determined by ⇢S(t) = TrE ⇢SE(t)

d
dt
⇢S(t) = � i

~ TrE [H, ⇢(t)] ⇢S(0) = TrE ⇢SE(0)



Quantum dynamical map

Reduced dynamics

⇢(0) = ⇢S(0) ⌦ ⇢E
unitary evolution����������! ⇢(t) = e� i

~Ht(⇢S(0) ⌦ ⇢E)e+ i
~Ht

TrE

??y
??yTrE

⇢S(0)
dynamical map���������! ⇢S(t) = �(t)⇢S(0)

Quantum dynamical map

⇢S(0) 7! ⇢S(t) = �(t)⇢S(0) = TrE(e� i
~Ht(⇢S(0) ⌦ ⇢E)e+ i

~Ht)

� = {�(t), t 2 R+|�(0) = I}

Completely positive trace preserving map



Quantum Markov process

Semigroup composition law

�(t)�(s) = �(t + s) t , s � 0 ) �(t) = exp(Lt)

Markov condition
Separation of time scales ⌧E ⌧ ⌧S

Quantum dynamical semigroups
[Gorini & al. JMP 1976; Lindblad, CMP 1976]

Quantum Markov process fixed by master equation

d
dt
⇢S(t) = L⇢S(t)

with generator in Lindblad form �k �> 0

L⇢S(t) = � i
~ [Heff , ⇢S(t)]+

X

k

�k

h
Ak⇢S(t)A

†
k�1

2
{A†

kAk , ⇢S(t)}
i

Master equation in Lindblad form



Open quantum systems

Motivations and goals
Microscopic derivation of reduced dynamical evolutions
Mathematical characterization of quantum dynamical map
Definition and characterization of quantum memory

Relevance of initial correlations
Decoherence and quantum to classical transition

Decoherence versus alternative quantum theories



Back to foundations
Open quantum system theory provides useful tool for study
and extension of dynamical reduction models

Modifications of unitary dynamics
Dissipative dynamical reduction models

[Bassi & al. PRA 2005; Smirne & al. PRA 2014; Smirne & Bassi Sci Rep 2015]

Non-Markovian dynamical reduction models
[Bassi & Ferialdi PRL 2009, PRA 2009; Ferialdi & Bassi PRL 2012]

Modifications of open quantum system dynamics
[Bahrami & al. PRL 2014; Bassi & al. PRL 2005]

Open quantum system theory describes decoherence
effects typically undistinguishable from dynamical
reduction models

[Bassi & al. RMP 2012]
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Classical stochastic processes

Statistical description of classical system by means of
stochastic process X (t), t � 0 taking values in {xi}i2N

Stochastic process characterized by hierarchy of joint
probability distributions

Pn(xn, tn; xn�1, tn�1; . . . ; x1, t1) tn � tn�1 � . . . � t1 � 0

obeying Kolmogorov consistency condition
X

xm

Pn(xn, tn; . . . ; xm, tm; . . . ; x1, t1) = Pn�1(xn, tn; . . . ; x1, t1)

Andrej Kolmogorov (1903-1987)



Classical Markovian processes

Lack of memory in the dynamics
described by means of Markov property
Conditional probabilities of Markovian process

P1|n(xn+1, tn+1|xn, tn; . . . ; x1, t1) ⌘ Pn+1(xn+1, tn+1; . . . ; x1, t1)
Pn(xn, tn; . . . ; x1, t1)

obey the constraint

P1|n(xn+1, tn+1|xn, tn; . . . ; x1, t1) = P1|1(xn+1, tn+1|xn, tn) n � 2

Andrej Markov (1856-1922)



Classical Markovian processes
Markovian process determined by
initial distribution and conditional transition probability

P1(x0, 0) T (x , t |y , s) ⌘ P1|1(x , t |y , s)

via

P1(x1, t1) =
X

x0

T (x1, t1|x0, 0)P1(x0, 0)

Pn(xn, tn; . . . ; x1, t1) =
Y

i=1

T (xi+1, ti+1|xi , ti)P1(x1, t1)

Consistency is ensured by Chapman-Kolmogorov equation

T (x , t |y , s) =
X

z

T (x , t |z, ⌧)T (z, ⌧ |y , s)

Sydney Chapman (1888-1970)



Classical divisibility and distinguishability

T (x , t |y , s) and P1(x , t) basic quantities in the description
of classical Markov processes to be taken as possible
starting point for quantum generalization
Signatures of Markovian process at the level of
probability density and conditional transition probability

P1(x, t)?
T (x, t|y, s)?



Classical divisibility and distinguishability

Finite dimensional system

P1(x , t) ! P(t) probability vector
T (x , t |y , s) ! ⇤(t , s) stochastic matrix

Chapman-Kolmogorov equation
expresses divisibility property

⇤(t , s) = ⇤(t , ⌧)⇤(⌧, s) 8t � ⌧ � s � 0

lack of memory in time evolution of probability vector

P(t) = ⇤(t , ⌧)P(⌧)



Classical divisibility and distinguishability

Kolmogorov distance between probability distribution

K (Q, P) =
1
2

X

n

|Qn � Pn|

0|{z}
Q=P

 K (Q, P)  1|{z}
Q?P

Kolmogorov distance monotone contraction with respect to
action of divisible stochastic matrix

K (P1(t + s), P2(t + s))  K (P1(t), P2(t)) 8t , s � 0

thanks to

⇤(t , s)n,m � 0
X

n

⇤(t , s)n,m = 1

[B.V. & al., NJP 2011]



Classical divisibility and distinguishability
Kolmogorov distance provides a notion of distinguishability
of classical states

[Fuchs & de Graaf, IEEE 1999]

General expression quantifying best strategy in assessing
statistical distinguishability of different states

P1 with a priori probability p1

P2 with a priori probability p2

according to statistical decision theory is given by

Psuccess =
1
2
(1 + K (P1, P2; p1, p2))

with
K (P1, P2; p1, p2) =

X

n

���p1P1
n � p2P2

n

���

obeying

|p1 � p2|| {z }
P1=P2

 K (P1, P2; p1, p2)  1|{z}
P1?P2



Classical divisibility and distinguishability
Divisibility and distinguishability distinct notions but . . .
Direct connection between distinguishability and divisibility
thanks to theorem by Kossakowski

[Kossakowski, Bull. Acad. Polon. Sci. Math. 1972; RMP 1972]

Consider trace preserving map ⇤

⇤ : `1(C) 7! `1(C)

⇤ positive iff contraction on all hermitian elements

⇤[P] � 0 8 P 2 `1(C), P � 0
m

k⇤[X ]k  kXk 8 X 2 `1(C), X = X †

with kXk =
P

n |Xn|

Andrzej Kossakowski



Classical divisibility and distinguishability

Signatures of Markovianity at the level of probability
distribution and conditional transition probability merge

⇤(t , s) = ⇤(t , ⌧)⇤(⌧, s) 8t � ⌧ � s � 0

where each element is a positive trace preserving
transformation, i.e. a stochastic matrix

m
K (P1(t+⌧), P2(t+⌧); p1, p2)  K (P1(t), P2(t); p1, p2) 8t , ⌧ � 0

monotone contraction 8 P1,2(0) and 8{pi}i=1,2
with P(t) = ⇤(t , 0)P(0) [Chruscinski & al., PRA 2011; Buscemi & Datta arXiv 2014]

Necessary but not sufficient criteria
for lack of memory in classical process
as can be shown by means of example

[B.V. & al., NJP 2011]
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Quantum non-Markovianity

Have we learnt something about classical Markovian and
non-Markovian processes which might be helpful to us
when we cross the quantum boundary?

Divisibility?Distinguishability?



Quantum non-Markovianity
System observables take the place of random variables

X =
X

xn

xn|'xnih'xn |

Values at different times fixed once we specify
measurement scheme, e.g. projective measurements

Mx⇢SE =
⇣
|'xih'x | ⌦ E

⌘
⇢SE

⇣
|'xih'x | ⌦ E

⌘

in between given time evolution

Ut⇢SE = Ut⇢SEU†
t

Natural definition

Pn(xn, tn; xn�1, tn�1; . . . ; x1, t1) ⌘
Tr
�MxnUtn�tn�1 . . . Mx2Ut2�t1Mx1Ut1⇢SE(0)

 

But Kolmogorov consistency condition does not hold
X

xm

Pn(xn, tn; . . . ; xm, tm; . . . ; x1, t1) 6= Pn�1(xn, tn; . . . ; x1, t1)

if joint probability distributions have to retain form



Quantum divisibility and distinguishability

Divisibility / distinguishability viewpoint provided sufficient
condition for classical non-Markovian process captured at
the level of the one-point probability density
Quantum counterpart of classical notion
Kolmogorov distance as a special instance of trace norm
distance for T (HS) ! `1(C)

K (P1(t), P2(t)) =
1
2

X

n

���P1
n(t) � P2

n(t)
���

m
D(⇢1

S(t), ⇢2
S(t)) =

1
2

Tr |⇢1
S(t) � ⇢2

S(t)|

=
1
2
k⇢1

S(t) � ⇢2
S(t)k



Quantum non-Markovianity

Consider behavior of distinguishability in time of ⇢1,2
S (t)

upon the action of quantum dynamical map �t

Non-Markovianity defined as revival in time of the
distinguishability among different initial states

�(t) ⌘ 1
2

d
dt

����t

⇣
⇢1

S(0) � ⇢2
S(0)

⌘��� > 0

Leading to an actual measure of non-Markovianity

N (�) = max
⇢1

S(0)?⇢2
S(0)

Z

�>0
dt �(t)

[Breuer & al., PRL 2009]

Environment

System

Environment

System

Markovian Non-Markovian



Quantum divisibility and distinguishability

Divisibility of stochastic matrices as a special instance of
divisibility for quantum dynamical map �t

Let �t admit linear inverse and consider

�(t , s) = �t�
�1
s 8t � s

The process is said divisible if

�(t , s) = �(t , ⌧)�(⌧, s) 8t � ⌧ � s � 0

with �(t2, t1) a positive map 8t2 � t1



Quantum divisibility and distinguishability

CP-divisibility corresponds to

�(t , s) = �(t , ⌧)�(⌧, s) 8t � ⌧ � s � 0

with �(t2, t1) a CP map 8t2 � t1
Starting point for a definition of non-Markovianity of an
open quantum system dynamics
CP however also takes care of correlations with ancillary
system, and we are looking for characterization involving
the system only

[Wolf & al., PRL 2008; Rivas & al., PRL 2010; Rep. Prog. Phys. 2014]



Quantum divisibility and distinguishability

Theorem by Kossakowski allows to identify divisibility and
monotonic decrease of distinguishability also in the
quantum case [Kossakowski, Bull. Acad. Polon. Sci. Math. 1972; RMP 1972]

Consider a trace preserving map �

� : T (HS) 7! T (HS)

� positive map iff � contraction on all self-adjoint
� positive map () � trace class operators

�[T ] � 0 8 T 2 T (HS), T � 0
m

k�[T ]k  kTk 8 T 2 T (HS), T = T †

with kTk =
P

n |tn|



Quantum divisibility and distinguishability
We are thus led to consider as non-Markovian quantum
processes those dynamical evolutions s.t.

⌃(t) =
d
dt

k�t(p1⇢
1
S � p2⇢

2
S)k1 � 0 for some t � 0

equivalent to P-divisibility (if the inverse does exist) so that

NP(�) = max
pi ,⇢

i
S

Z

⌃>0
dt ⌃(t)

[Breuer & al., arXiv 2015; Wißmann & al., arXiv 2015]

�t not invertible

�t invertible

P-divisible not P-divisible

CP-divisible

non-Markovian

N (�) > 0

Markovian

N (�) = 0



Applications & foundations

Relevance of non-Markovianity for applications
Experimental observation

[Liu & al., Nature Phys. 2011]

Criterion for the detection of initial correlations
[Laine & al., EPL 2010; Smirne & al., PRA 2011; Li & al., PRA 2011]

Determination of complex system properties via quantum
probe approach
[Apollaro & al., 2011; Haikka & al., PRA 2012; Smirne & al., PRA 2013; Benedetti & al., PRA 2014]

Criteria for the determination of quantum correlations
[Gessner & al., PRL 2011; Cialdi & al., PRA 2014]

Possible relevance of non-Markovianity for foundations
Modification of quantum mechanics arising from colored
noises or general non-Markovian dynamical evolutions

[Bassi & Ferialdi PRL 2009, PRA 2009; Ferialdi & Bassi PRL 2012]
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