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0 From foundations to open quantum systems and back
e Classical processes: divisibility and distinguishability

© Quantum non-Markovianity



Foundations of quantum mechanics

@ Statistical structure of quantum theory
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@ Single particle statistical experiment

@ State as equivalence class of preparation procedures
p € T(H) normed space with ||Al|1 = Tr|A|

@ Observable as equivalence class of registration procedures
B € B(H) normed space with [|A|| = sup 41 [[A¢||

@ Statistics of experiment
uB(M) = Tr pEB(M)

@ Quantum mechanics as a theory of probability



Quantum information

@ Quantum systems as information carriers

-

p quantum channel E
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@ Quantum information and communication standpoint
@ Relevance of general state transformations
@ Relevance of possibly detrimental noise and decoherence

@ Quantum systems unavoidably
linked to a macroscopic background



Open quantum systems

@ Quantum systems as relevant degrees of freedom
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Reduced state System observable

@ Open quantum system standpoint
@ Relevance of general state transformations
@ Relevance of noise and decoherence

@ Quantum systems unavoidably
linked to a macroscopic background

@ Measurement interaction as archetype



Modifications of quantum mechanics

@ Statistical structure of quantum theory

| PREPARATION | Vinoa (1) | REGISTRATION |
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@ Modification of Schrédinger time evolution
to solve measurement problem

@ Single particle statistical experiment
@ Statistics of experiment 1% (M) = Tr pE* (M)
@ Quantum mechanics as a theory of probability



Open quantum systems

@ Quantum system interacting with environment

[Davies, 1976; Holevo, 2001; Breuer & Petruccione, 2002]

Environment
Hilbert space H
Hamiltonian Hg
Environment state pp
A

A4

Open system
Hilbert space Hs
Hamiltonian Hs
System state ps.

@ Bipartite setting H € L(Hs®@ He) pse € T(Hs @ He)
System observables only determined by ps(f) = Tre pse(t)

os(t) =~ L TeH (0] ps(0) = Tre pse(0)



Quantum dynamical map

@ Reduced dynamics

unitary evolution
_—

p(0) = ps(0) ® pe

TI’EJ/ J/TrE

dynamical map
ps(0) E—

@ Quantum dynamical map

ps(0) = ps(t) = &(t)ps(0) = Tre(e™ H(ps(0) @ pe)et )

= {0(1),t € Ry[0(0) = T}

Completely positive trace preserving map J




Quantum Markov process

@ Semigroup composition law
O(H)P(s) = P(t+ 9) Ls>0 = O(t) =exp(L)

@ Markov condition
Separation of time scales 7 < 75

@ Quantum dynamical semigroups
[Gorini & al. JMP 1976; Lindblad, CMP 1976]
Quantum Markov process fixed by master equation

jtps(t) = Lps(t)

with generator in Lindblad form v, >> 0

£e(t) = — Mo ps(D1+S 1k Ao~ 2 {ALAK p6(0)]
k

Master equation in Lindblad form J




Open quantum systems

Motivations and goals
@ Microscopic derivation of reduced dynamical evolutions
@ Mathematical characterization of quantum dynamical map
@ Definition and characterization of quantum memory
@ Relevance of initial correlations
@ Decoherence and quantum to classical transition
@ Decoherence versus alternative quantum theories



Back to foundations

@ Open quantum system theory provides useful tool for study
and extension of dynamical reduction models
e Modifications of unitary dynamics
@ Dissipative dynamical reduction models
[Bassi & al. PRA 2005; Smirne & al. PRA 2014; Smirne & Bassi Sci Rep 2015]
@ Non-Markovian dynamical reduction models
[Bassi & Ferialdi PRL 2009, PRA 2009; Ferialdi & Bassi PRL 2012]
e Modifications of open quantum system dynamics
[Bahrami & al. PRL 2014; Bassi & al. PRL 2005]
@ Open quantum system theory describes decoherence
effects typically undistinguishable from dynamical
reduction models
[Bassi & al. RMP 2012]
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e Classical processes: divisibility and distinguishability



Classical stochastic processes

@ Statistical description of classical system by means of
stochastic process X(t), t > 0 taking values in {x;}cn

@ Stochastic process characterized by hierarchy of joint
probability distributions

Pn(Xn,tn;Xn_1,tn_1;...;X1,t1) tnz tn_1 > ... > t1 ZO

obeying Kolmogorov consistency condition

Andrej Kolmogorov (1903-1987)



Classical Markovian processes

@ Lack of memory in the dynamics
described by means of Markov property

@ Conditional probabilities of Markovian process

Pri1(Xnt1: thts -5 X1, 1)

P1|n(Xn+1a thit|Xn, ty oo Xq, )

obey the constraint

Andrej Markov (1856-1922)



Classical Markovian processes

@ Markovian process determined by
initial distribution and conditional transition probability
P1(X070) T(X,t‘y,S)EP-I“(X,t’y,S)
via
Pi(xi,t1) = > T(x1,ti[x0,0)Pi(x0,0)
Xo
Po(Xn,tn; %1, 1) = [T Tt i [ %3 6) Py (1, 1)
i=1
@ Consistency is ensured by Chapman-Kolmogorov equation

z

Sydney Chapman (1888-1970)




Classical divisibility and distinguishability

@ T(x,tly,s)and P;(x,t) basic quantities in the description
of classical Markov processes to be taken as possible
starting point for quantum generalization

@ Signatures of Markovian process at the level of
probability density and conditional transition probability




Classical divisibility and distinguishability

@ Finite dimensional system

Pi(x,t) — P(t) probability vector
T(x, tly,s) — NA(ts) stochastic matrix

@ Chapman-Kolmogorov equation
expresses divisibility property

A(t,s) = A(t, T)N\(T, S) Vi>T7>s5>0
lack of memory in time evolution of probability vector

P(t) = A(t,7)P(7)



Classical divisibility and distinguishability

@ Kolmogorov distance between probability distribution
KQ.P) =5 Z |Qn — P

0 <KQP) <1
Q=P QLp

@ Kolmogorov distance monotone contraction with respect to
action of divisible stochastic matrix

K(P'(t+s), P?(t+s)) < K(P'(t), P?(t))  Vt,s>0
thanks to

/\(t, S)n7m Z 0 Z/\(t, S)n7m — 1
n

[B.V. & al., NJP 2011]



Classical divisibility and distinguishability

@ Kolmogorov distance provides a notion of distinguishability
of classical states
[Fuchs & de Graaf, IEEE 1999]
@ General expression quantifying best strategy in assessing
statistical distinguishability of different states
P; with a priori probability  pq
P> with a priori probability  p»
according to statistical decision theory is given by

1
Psuccess = 5(1 + K(P17P2;p17p2))

with
K(P'. P2 pr.p2) = 3 |piP) — PP
n
obeying

o1 — p2| < K(P', P?; p1,p2) < _1
L)) N
pi—p2 P11 P2



Classical divisibility and distinguishability

@ Divisibility and distinguishability distinct notions but . . .
@ Direct connection between distinguishability and divisibility
thanks to theorem by Kossakowski
[Kossakowski, Bull. Acad. Polon. Sci. Math. 1972; RMP 1972]
@ Consider trace preserving map A

A 51((:) — 51(@)

A positive iff contraction on all hermitian elements

A[P] =0 VP e (4(C), P>0
)
IALXTI < [1X]l VX € 4(C), X =X1

with [[X[| = 32, [ Xnl

Andrzej Kossakowski



Classical divisibility and distinguishability

@ Signatures of Markovianity at the level of probability
distribution and conditional transition probability merge

A(t,s) = A(t, 7)N(T, s) Vi>1>8>0

where each element is a positive trace preserving
transformation, i.e. a stochastic matrix

)
K(P'(t+7), P?(t+7); p1, p2) < K(P'(t), PA(t); p1,p2) Vt, 7 >0
monotone contraction v P2(0) and V{p;}i=1 2
Wlth P(t) = /\(t, O)P(O) [Chruscinski & al., PRA 2011; Buscemi & Datta arXiv 2014]

@ Necessary but not sufficient criteria
for lack of memory in classical process
as can be shown by means of example

[B.V. &al., NJP 2011]



© Quantum non-Markovianity



Quantum non-Markovianity

@ Have we learnt something about classical Markovian and
non-Markovian processes which might be helpful to us
when we cross the quantum boundary?
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Quantum non-Markovianity

@ System observables take the place of random variables

X = an‘@Xn><90Xn’

Xn

@ Values at different times fixed once we specify
measurement scheme, e.g. projective measurements

Mxpse = <|<Px>(<Px| ® ﬂE)ﬂSE(\@xﬂ%\ ® 15)
in between given time evolution
Urpse = Urpse U]
@ Natural definition
Pn(Xn, tn; Xn—1, th—1; ... i X1, 1) =
Tr { My, Ut—t, ;- - - MxpUp—t, Mx, Uz, pse(0) }
@ But Kolmogorov consistency condition does not hold



Quantum divisibility and distinguishability

@ Divisibility / distinguishability viewpoint provided sufficient
condition for classical non-Markovian process captured at
the level of the one-point probability density

@ Quantum counterpart of classical notion

@ Kolmogorov distance as a special instance of trace norm
distance for T (Hs) — ¢1(C)

— P3(1)

K(P'(0),P2(1) = Z

D(ps(t). p(1))

1
5 Trlps(t) = p5(0)]

S50 — 23]



Quantum non-Markovianity

e Consider behavior of distinguishability in time of pg>(t)
upon the action of quantum dynamical map &;

@ Non-Markovianity defined as revival in time of the
distinguishability among different initial states

o1 = 3 [ (#4030 | >0

@ Leading to an actual measure of non-Markovianity

N(®)= max dt o(t)
PL(0)Lr2(0) Jo>0

[Breuer & al., PRL 2009]

Environment Environment

Markovian Non-Markovian




Quantum divisibility and distinguishability

@ Divisibility of stochastic matrices as a special instance of
divisibility for quantum dynamical map &
@ Let &; admit linear inverse and consider

o(t,s) = ddg" Vt>s
The process is said divisible if
o(t,s) = o(t, 7)P(7, 8) Vi>1>8>0

with ®(f, t1) a positive map Vi, > t



Quantum divisibility and distinguishability

@ CP-divisibility corresponds to
®(t,8) = o(t, 7)P(7, 8) Vi>1>s>0

with ®(t, t1) a CP map Vi, > t4
@ Starting point for a definition of non-Markovianity of an
open quantum system dynamics

@ CP however also takes care of correlations with ancillary
system, and we are looking for characterization involving
the system only

[Wolf & al., PRL 2008; Rivas & al., PRL 2010; Rep. Prog. Phys. 2014]



Quantum divisibility and distinguishability

@ Theorem by Kossakowski allows to identify divisibility and
monotonic decrease of distinguishability also in the

quantum case [Kossakowski, Bull. Acad. Polon. Sci. Math. 1972; RMP 1972]

@ Consider a trace preserving map ¢
o : T(Hs) — T(?‘ls)

¢ positive map iff ® contraction on all self-adjoint
trace class operators

®[T] >0 VT eT(Hs), T>0
0
l[T < (171 VT eT(Hs), T=T'

with || T = >_, [t|



Quantum divisibility and distinguishability

@ We are thus led to consider as non-Markovian quantum
processes those dynamical evolutions s.t.

d
x(t) = qu’t(Pmé — p2p3)|1 >0 forsomet>0
equivalent to P-divisibility (if the inverse does exist) so that
Np(®) = max dt ¥(t)

pips JE>0

[Breuer & al., arXiv 2015; WiBmann & al., arXiv 2015]

CP-divisible




Applications & foundations

@ Relevance of non-Markovianity for applications
e Experimental observation
[Liu & al., Nature Phys. 2011]
o Criterion for the detection of initial correlations
[Laine & al., EPL 2010; Smirne & al., PRA 2011; Li & al., PRA 2011]
e Determination of complex system properties via quantum
probe approach
[Apollaro & al., 2011; Haikka & al., PRA 2012; Smirne & al., PRA 2013; Benedetti & al., PRA 2014]
o Criteria for the determination of quantum correlations
[Gessner & al., PRL 2011; Cialdi & al., PRA 2014]

@ Possible relevance of non-Markovianity for foundations

e Modification of quantum mechanics arising from colored
noises or general non-Markovian dynamical evolutions
[Bassi & Ferialdi PRL 2009, PRA 2009; Ferialdi & Bassi PRL 2012]
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