Is purity eternal at the Planck scale?

Michele Arzano

Dipartimento di Fisica "Sapienza" University of Rome

September 25, 2015 FQT 2015 - LNF

Do black holes evolve pure states into mixed states?

PHYSICAL REVIEW D

VOLUME 14, NUMBER 10

15 NOVEMBER 1976

Breakdown of predictability in gravitational collapse*

S. W. Hawking[†] Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, England and California Institute of Technology, Pasadena, California 91125 (Received 25 August 1975)

Do black holes evolve pure states into mixed states?

PHYSICAL REVIEW D VOLUME 14, NUMBER 10 15 NOVEMBER 1976

Breakdown of predictability in gravitational collapse*

S. W. Hawking¹ Department of Applied Mathematics and Theoretical Physics. University of Cambridge. Cambridge. England and California Institute of Technology. Pasadena, California 91125 (Received 25 August 1975)

• Ordinary quantum evolution is *unitary*: $\rho_{fin} = S \rho_{in} S^{\dagger}$ with $SS^{\dagger} = 1$

Do black holes evolve pure states into mixed states?

PHYSICAL REVIEW D VOLUME 14, NUMBER 10 15 NOVEMBER 1976

Breakdown of predictability in gravitational collapse*

S. W. Hawking¹ Department of Applied Mathematics and Theoretical Physics. University of Cambridge. Cambridge. England and California Institute of Technology. Pasadena, California 91125 (Received 25 August 1975)

- Ordinary quantum evolution is *unitary*: $\rho_{fin} = S \rho_{in} S^{\dagger}$ with $SS^{\dagger} = 1$
- Unitary $S \implies$ if $\text{Tr}\rho_{in}^2 = 1$ then $\text{Tr}\rho_{fin}^2 = 1$ i.e. purity is eternal

Do black holes evolve pure states into mixed states?

PHYSICAL REVIEW D VOLUME 14, NUMBER 10 15 NOVEMBER 1976

Breakdown of predictability in gravitational collapse*

S. W. Hawking¹ Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, England and California Institute of Technology, Pasadena, California 91125 (Received 25 August 1975)

- Ordinary quantum evolution is *unitary*: $ho_{fin} = S
 ho_{in} S^{\dagger}$ with $SS^{\dagger} = 1$
- Unitary $S \implies$ if $\text{Tr}\rho_{in}^2 = 1$ then $\text{Tr}\rho_{fin}^2 = 1$ i.e. purity is eternal
- BH quantum radiance suggests $\rho_{in}(\text{pure}) \rightarrow \rho_{fin}(\text{mixed})$ should be possible

Do black holes evolve pure states into mixed states?

PHYSICAL REVIEW D VOLUME 14, NUMBER 10 15 NOVEMBER 1976

Breakdown of predictability in gravitational collapse*

S. W. Hawking¹ Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, England and California Institute of Technology, Pasadena, California 91125 (Received 25 August 1975)

- Ordinary quantum evolution is *unitary*: $ho_{fin} = S
 ho_{in} S^{\dagger}$ with $SS^{\dagger} = 1$
- Unitary $S \implies$ if $\text{Tr}\rho_{in}^2 = 1$ then $\text{Tr}\rho_{fin}^2 = 1$ i.e. purity is eternal
- BH quantum radiance suggests $\rho_{in}(\text{pure}) \rightarrow \rho_{fin}(\text{mixed})$ should be possible
- A "superscattering" operator \$: $ho_{fin} = \$
 ho_{in} \neq S
 ho_{in} S^{\dagger}$ then $\mathrm{Tr}
 ho_{fin}^2 \leq 1$

Do black holes evolve pure states into mixed states?

PHYSICAL REVIEW D VOLUME 14, NUMBER 10 15 NOVEMBER 1976

Breakdown of predictability in gravitational collapse*

S. W. Hawking¹ Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, England and California Institute of Technology, Pasadena, California 91125 (Received 25 August 1975)

- Ordinary quantum evolution is *unitary*: $ho_{fin} = S
 ho_{in} S^{\dagger}$ with $SS^{\dagger} = 1$
- Unitary $S \implies$ if $\text{Tr}\rho_{in}^2 = 1$ then $\text{Tr}\rho_{fin}^2 = 1$ i.e. purity is eternal
- BH quantum radiance suggests $\rho_{in}(\text{pure}) \rightarrow \rho_{fin}(\text{mixed})$ should be possible
- A "superscattering" operator \$: $ho_{fin} = \$
 ho_{in} \neq S
 ho_{in}S^{\dagger}$ then $\mathrm{Tr}
 ho_{fin}^2 \leq 1$

Over the years the possibility of **decoherence** in BH evolution has **fallen into oblivion** within the community (except notable exceptions: Wald and Unruh)

Do black holes evolve pure states into mixed states?

PHYSICAL REVIEW D VOLUME 14, NUMBER 10 15 NOVEMBER 1976

Breakdown of predictability in gravitational collapse*

S. W. Hawking¹ Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, England and California Institute of Technology, Pasadena, California 91125 (Received 25 August 1975)

- Ordinary quantum evolution is *unitary*: $ho_{fin} = S
 ho_{in} S^{\dagger}$ with $SS^{\dagger} = 1$
- Unitary $S \implies$ if $\text{Tr}\rho_{in}^2 = 1$ then $\text{Tr}\rho_{fin}^2 = 1$ i.e. purity is eternal
- BH quantum radiance suggests $\rho_{in}(\text{pure}) \rightarrow \rho_{fin}(\text{mixed})$ should be possible
- A "superscattering" operator \$: $\rho_{fin} = \$\rho_{in} \neq S\rho_{in}S^{\dagger}$ then $\mathrm{Tr}\rho_{fin}^2 \leq 1$

Over the years the possibility of **decoherence** in BH evolution has **fallen into oblivion** within the community (except notable exceptions: Wald and Unruh)

All efforts in the past 20 years directed to find a way in which purity is preserved in BH evaporation.

Do black holes evolve pure states into mixed states?

PHYSICAL REVIEW D VOLUME 14, NUMBER 10 15 NOVEMBER 1976

Breakdown of predictability in gravitational collapse*

S. W. Hawking¹ Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, England and California Institute of Technology, Pasadena, California 91125 (Received 25 August 1975)

- Ordinary quantum evolution is *unitary*: $ho_{fin} = S
 ho_{in} S^{\dagger}$ with $SS^{\dagger} = 1$
- Unitary $S \implies$ if $\text{Tr}\rho_{in}^2 = 1$ then $\text{Tr}\rho_{fin}^2 = 1$ i.e. purity is eternal
- BH quantum radiance suggests $\rho_{in}(\text{pure}) \rightarrow \rho_{fin}(\text{mixed})$ should be possible
- A "superscattering" operator \$: $ho_{fin} = \$
 ho_{in} \neq S
 ho_{in} S^{\dagger}$ then $\mathrm{Tr}
 ho_{fin}^2 \leq 1$

Over the years the possibility of **decoherence** in BH evolution has **fallen into oblivion** within the community (except notable exceptions: Wald and Unruh)

All efforts in the past 20 years directed to find a way in which purity is preserved in BH evaporation.

Why?

"Difficulties for the Evolution of Pure States Into Mixed States" Banks, Peskin and Susskind, Nucl. Phys. B 244, 125 (1984)

"Difficulties for the Evolution of Pure States Into Mixed States" Banks, Peskin and Susskind, Nucl. Phys. B 244, 125 (1984)

• Ellis, Hagelin, Nanopoulos and Srednicki, studied dynamics associated to \$ represented by a differential equation for ρ

$$\dot{\rho} = \mathcal{H} \rho \neq -i[H, \rho]$$

(EHNS studied phenomenology for neutral kaon systems and neutron interferometry)

"Difficulties for the Evolution of Pure States Into Mixed States" Banks, Peskin and Susskind, Nucl. Phys. B 244, 125 (1984)

• Ellis, Hagelin, Nanopoulos and Srednicki, studied dynamics associated to \$ represented by a differential equation for ρ

$$\dot{\rho} = \mathcal{H} \rho \neq -i[H, \rho]$$

(EHNS studied phenomenology for neutral kaon systems and neutron interferometry)

• BPS looked for a general form for $\mathcal{M}\rho$.

"Difficulties for the Evolution of Pure States Into Mixed States" Banks, Peskin and Susskind, Nucl. Phys. B 244, 125 (1984)

• Ellis, Hagelin, Nanopoulos and Srednicki, studied dynamics associated to \$ represented by a differential equation for ρ

$$\dot{\rho} = \mathcal{H} \rho \neq -i[H, \rho]$$

(EHNS studied phenomenology for neutral kaon systems and neutron interferometry)

- BPS looked for a general form for Hp. Assuming that
 - $\blacktriangleright \ \rho = \rho^{\dagger}$
 - $\mathrm{Tr}\rho = 1$

are preserved by time evolution

"Difficulties for the Evolution of Pure States Into Mixed States" Banks, Peskin and Susskind, Nucl. Phys. B 244, 125 (1984)

• Ellis, Hagelin, Nanopoulos and Srednicki, studied dynamics associated to \$ represented by a differential equation for ρ

$$\dot{\rho} = \mathcal{H}\rho \neq -i[H,\rho]$$

(EHNS studied phenomenology for neutral kaon systems and neutron interferometry)

- BPS looked for a general form for Hp. Assuming that
 - $\blacktriangleright \ \rho = \rho^{\dagger}$
 - $\operatorname{Tr}\rho = 1$

are preserved by time evolution they (re)-discovered the Lindblad equation

$$\dot{\rho} = -i[H,\rho] - \frac{1}{2}h_{\alpha\beta}\left(Q^{\alpha}Q^{\beta}\rho + \rho Q^{\beta}Q^{\alpha} - 2Q^{\alpha}\rho Q^{\beta}\right)$$

 $h_{lphaeta}$ is a hermitian matrix of constants and Q^lpha form a basis of hermitian matrices

The conclusions of BPS were lapidary

The conclusions of BPS were lapidary

ABSTRACT

Motivated by Hawking's proposal that the quantum-mechanical density matrix ρ obeys an equation more general than the Schrödinger equation, we study the general properties of evolution equations for ρ . We argue that any more general equation for ρ violates either locality or energy-momentum conservation.

The conclusions of BPS were lapidary

ABSTRACT

Motivated by Hawking's proposal that the quantum-mechanical density matrix ρ obeys an equation more general than the Schrödinger equation, we study the general properties of evolution equations for ρ . We argue that any more general equation for ρ violates either locality or energy-momentum conservation.

end of the story?

Srednicki, Nucl. Phys. B 410, 143 (1993) [hep-th/9206056].

Non-locality implied by energy conservation is *harmless* and it **does not** lead to macroscopic violations of causality...

However

Srednicki, Nucl. Phys. B 410, 143 (1993) [hep-th/9206056].

Non-locality implied by energy conservation is *harmless* and it **does not** lead to macroscopic violations of causality...

However

- Lindblad time evolution is still problematic since: "[...] loss of purity is
 incompatible with the weakest possible form of Lorentz covariance."
- "One may still question whether or not... [the Lindblad quation]... has any reasonable chance to arise as the low energy limit of a more fundamental theory. I know of no such theory [...]"

Srednicki, Nucl. Phys. B 410, 143 (1993) [hep-th/9206056].

Non-locality implied by energy conservation is *harmless* and it **does not** lead to macroscopic violations of causality...

However

- Lindblad time evolution is still problematic since: "[...] loss of purity is incompatible with the weakest possible form of Lorentz covariance."
- "One may still question whether or not... [the Lindblad quation]... has any reasonable chance to arise as the low energy limit of a more fundamental theory. I know of no such theory [...]"

"The fascinating possibility that purity may not be eternal is still out of reach."

Srednicki, Nucl. Phys. B 410, 143 (1993) [hep-th/9206056].

Non-locality implied by energy conservation is *harmless* and it **does not** lead to macroscopic violations of causality...

However

- Lindblad time evolution is still problematic since: "[...] loss of purity is incompatible with the weakest possible form of Lorentz covariance."
- "One may still question whether or not... [the Lindblad quation]... has any reasonable chance to arise as the low energy limit of a more fundamental theory. I know of no such theory [...]"

"The fascinating possibility that purity may not be eternal is still out of reach."

<u>Goal of this talk</u>: show that **Planck scale deformations of translations** naturally lead to the possibility of generalized quantum time evolution of Lindblad type!

MA: 1403.6457; Phys. Rev. D 90, 024016 (2014)

Outline

- Topological particles and group momentum space in 3d gravity
- Deformed translations and Lindblad evolution in 3d
- de Sitter momentum space: beyond von Neumann evolution in 4d
- Conclusions and outlook

General relativity in 2+1 dimensions admits no local d.o.f.

General relativity in 2+1 dimensions admits no local d.o.f.

• **Particles**: point-like defects \rightarrow *conical space*

$$ds^2=-dt^2+dr^2+(1-4{\it Gm})^2r^2darphi^2$$
 (Deser, Jackiw, 't Hooft, 1984)

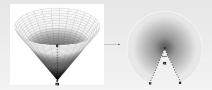
General relativity in 2+1 dimensions admits no local d.o.f.

● **Particles**: point-like defects → *conical space*

$$ds^2=-dt^2+dr^2+(1-4{\it Gm})^2r^2darphi^2$$
 (Deser, Jackiw, 't Hooft, 1984)

• Euclidean plane with a wedge "cut-out", with deficit angle $\alpha = 8\pi Gm$ proportional to the particle's mass m

(3d Newton's constat G $\sim 1/M_{
m Planck}$)



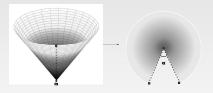
General relativity in 2+1 dimensions admits no local d.o.f.

● **Particles**: point-like defects → *conical space*

$$ds^2=-dt^2+dr^2+(1-4{\it Gm})^2r^2darphi^2$$
 (Deser, Jackiw, 't Hooft, 1984)

• Euclidean plane with a wedge "cut-out", with deficit angle $\alpha = 8\pi Gm$ proportional to the particle's mass m

(3d Newton's constat G $\sim 1/M_{
m Planck}$)



Particle's mass (rest energy) can be read off evaluating the holonomy of the flat connection around the defect and results in a rotation $h_{\alpha} \in SL(2, \mathbb{R})$

ordinary relativistic kinematics (G = 0)

ordinary relativistic kinematics (G = 0)

momentum space
$$\mathbb{R}^{2,1} \simeq \mathfrak{sl}(2,\mathbb{R}) \to p = \begin{pmatrix} p^2 & p^1 + p^0 \\ p^1 - p^0 & -p^2 \end{pmatrix} = p^{\mu} \gamma_{\mu} , \quad \operatorname{Tr}(\gamma_{\mu}) = 0$$
$$\det(p) = (p^0)^2 - (p^1)^2 - (p^2)^2 = m^2$$

ordinary relativistic kinematics (G = 0)

momentum space
$$\mathbb{R}^{2,1} \simeq \mathfrak{sl}(2,\mathbb{R}) \to p = \begin{pmatrix} p^2 & p^1 + p^0 \\ p^1 - p^0 & -p^2 \end{pmatrix} = p^{\mu} \gamma_{\mu} , \quad \operatorname{Tr}(\gamma_{\mu}) = 0$$
$$\det(p) = (p^0)^2 - (p^1)^2 - (p^2)^2 = m^2$$

Adjoint action of $SL(2,\mathbb{R})$ on $\mathfrak{sl}(2,\mathbb{R})$: $Ad_g(p) = g p g^{-1}$ preserves determinant

ordinary relativistic kinematics (G = 0)

momentum space
$$\mathbb{R}^{2,1} \simeq \mathfrak{sl}(2,\mathbb{R}) \to p = \begin{pmatrix} p^2 & p^1 + p^0 \\ p^1 - p^0 & -p^2 \end{pmatrix} = p^{\mu} \gamma_{\mu} , \quad \text{Tr}(\gamma_{\mu}) = 0$$

$$\det(p) = (p^0)^2 - (p^1)^2 - (p^2)^2 = m^2$$

Adjoint action of $SL(2,\mathbb{R})$ on $\mathfrak{sl}(2,\mathbb{R})$: $Ad_g(p) = g p g^{-1}$ preserves determinant

 $p = g m \gamma_0 g^{-1} \in$ mass-shells = orbits of Lorentz group on $\mathfrak{sl}(2, \mathbb{R})$

ordinary relativistic kinematics (G = 0)

momentum space
$$\mathbb{R}^{2,1} \simeq \mathfrak{sl}(2,\mathbb{R}) \to p = \begin{pmatrix} p^2 & p^1 + p^0 \\ p^1 - p^0 & -p^2 \end{pmatrix} = p^{\mu}\gamma_{\mu}, \quad \operatorname{Tr}(\gamma_{\mu}) = 0$$
$$\det(p) = (p^0)^2 - (p^1)^2 - (p^2)^2 = m^2$$

Adjoint action of $SL(2,\mathbb{R})$ on $\mathfrak{sl}(2,\mathbb{R})$: $Ad_g(p) = g p g^{-1}$ preserves determinant

 $p = g \ m \gamma_0 \ g^{-1} \in$ mass-shells = orbits of Lorentz group on $\mathfrak{sl}(2, \mathbb{R})$

"Rest energy":
$$m\gamma_0 \in \mathfrak{sl}(2,\mathbb{R}) \xrightarrow{G\neq 0} h_\alpha = e^{4\pi G m \gamma_0} \in SL(2,\mathbb{R})$$

ordinary relativistic kinematics (G = 0)

momentum space
$$\mathbb{R}^{2,1} \simeq \mathfrak{sl}(2,\mathbb{R}) \rightarrow p = \begin{pmatrix} p^2 & p^1 + p^0 \\ p^1 - p^0 & -p^2 \end{pmatrix} = p^{\mu}\gamma_{\mu}, \quad \operatorname{Tr}(\gamma_{\mu}) = 0$$
$$\det(p) = (p^0)^2 - (p^1)^2 - (p^2)^2 = m^2$$

Adjoint action of $SL(2,\mathbb{R})$ on $\mathfrak{sl}(2,\mathbb{R})$: $Ad_g(p) = g p g^{-1}$ preserves determinant

 $p = g m \gamma_0 g^{-1} \in$ mass-shells = orbits of Lorentz group on $\mathfrak{sl}(2, \mathbb{R})$

"Rest energy":
$$m\gamma_0 \in \mathfrak{sl}(2,\mathbb{R}) \xrightarrow{G\neq 0} h_\alpha = e^{4\pi G m \gamma_0} \in SL(2,\mathbb{R})$$

For $G \neq 0$ (deformed) mass-shells given by conjugation: $h = gh_{\alpha}g^{-1}$; $g \in SL(2,\mathbb{R})$

ordinary relativistic kinematics (G = 0)

momentum space
$$\mathbb{R}^{2,1} \simeq \mathfrak{sl}(2,\mathbb{R}) \rightarrow p = \begin{pmatrix} p^2 & p^1 + p^0 \\ p^1 - p^0 & -p^2 \end{pmatrix} = p^{\mu}\gamma_{\mu}, \quad \operatorname{Tr}(\gamma_{\mu}) = 0$$
$$\det(p) = (p^0)^2 - (p^1)^2 - (p^2)^2 = m^2$$

Adjoint action of $SL(2,\mathbb{R})$ on $\mathfrak{sl}(2,\mathbb{R})$: $Ad_g(p) = g p g^{-1}$ preserves determinant

 $p = g m \gamma_0 g^{-1} \in$ mass-shells = orbits of Lorentz group on $\mathfrak{sl}(2, \mathbb{R})$

"Rest energy":
$$m\gamma_0 \in \mathfrak{sl}(2,\mathbb{R}) \xrightarrow{G\neq 0} h_\alpha = e^{4\pi G m \gamma_0} \in SL(2,\mathbb{R})$$

For $G \neq 0$ (deformed) mass-shells given by conjugation: $h = gh_{\alpha}g^{-1}$; $g \in SL(2, \mathbb{R})$

 The physical three-momentum of a massive particle is given by elements of the conjugacy class of SL(2, R) with rotations by an angle α as representative elements

ordinary relativistic kinematics (G = 0)

momentum space
$$\mathbb{R}^{2,1} \simeq \mathfrak{sl}(2,\mathbb{R}) \rightarrow p = \begin{pmatrix} p^2 & p^1 + p^0 \\ p^1 - p^0 & -p^2 \end{pmatrix} = p^{\mu}\gamma_{\mu}, \quad \operatorname{Tr}(\gamma_{\mu}) = 0$$
$$\det(p) = (p^0)^2 - (p^1)^2 - (p^2)^2 = m^2$$

Adjoint action of $SL(2,\mathbb{R})$ on $\mathfrak{sl}(2,\mathbb{R})$: $Ad_g(p) = g p g^{-1}$ preserves determinant

 $p = g m \gamma_0 g^{-1} \in$ mass-shells = orbits of Lorentz group on $\mathfrak{sl}(2, \mathbb{R})$

"Rest energy":
$$m\gamma_0 \in \mathfrak{sl}(2,\mathbb{R}) \xrightarrow{G\neq 0} h_\alpha = e^{4\pi G m \gamma_0} \in SL(2,\mathbb{R})$$

For $G \neq 0$ (deformed) mass-shells given by conjugation: $h = gh_{\alpha}g^{-1}$; $g \in SL(2, \mathbb{R})$

- The physical three-momentum of a massive particle is given by elements of the conjugacy class of SL(2, R) with rotations by an angle α as representative elements
- Deformed mass-shell condition:

$$\frac{1}{2}\mathrm{Tr}(h) = \cos(4\pi Gm)$$

Momenta of particles coupled to 3d gravity = elements of a non-abelian group!

Momenta of particles coupled to 3d gravity = elements of a non-abelian group!

• *SL*(2, ℝ)-momenta parametrize motion of a conical defect ⇒ "**boost**" the static conical metric: **holonomy around defect** belongs to conjugacy class of rotations

Momenta of particles coupled to 3d gravity = elements of a non-abelian group!

- SL(2, ℝ)-momenta parametrize motion of a conical defect ⇒ "boost" the static conical metric: holonomy around defect belongs to conjugacy class of rotations
- picture can be generalized to higher dimensions (MA and T. Trzesniewski arXiv:1412.8452) and to massless defects (conjugacy class of "null rotation")

Momenta of particles coupled to 3d gravity = elements of a non-abelian group!

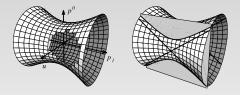
- *SL*(2, ℝ)-momenta parametrize motion of a conical defect ⇒ "**boost**" the static conical metric: **holonomy around defect** belongs to conjugacy class of rotations
- picture can be generalized to higher dimensions (MA and T. Trzesniewski arXiv:1412.8452) and to massless defects (conjugacy class of "null rotation")
- massive and massless co-dimension 2 defects in 3 + 1 dimensions used as building blocks of 't Hooft "piecewise flat gravity" (see arXiv:0804.0328)

Parametrize group elements: $h = u\mathbb{1} + \frac{p^{\mu}}{\kappa}\gamma_{\mu}$ with $\kappa = (4\pi G)^{-1}$

Parametrize group elements: $h = u\mathbb{1} + rac{p^{\mu}}{\kappa}\gamma_{\mu}$ with $\kappa = (4\pi G)^{-1}$

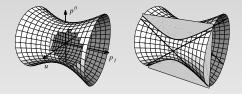
The unit determinant condition $u^2 + p^2/\kappa^2 = 1 \Longrightarrow$

Parametrize group elements: $h = u\mathbb{1} + \frac{p^{\mu}}{\kappa}\gamma_{\mu}$ with $\kappa = (4\pi G)^{-1}$ The unit determinant condition $u^2 + p^2/\kappa^2 = 1 \Longrightarrow$



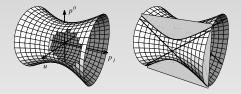
 p^{μ} are embedding coordinates on AdS space;

Parametrize group elements: $h = u\mathbb{1} + \frac{p^{\mu}}{\kappa}\gamma_{\mu}$ with $\kappa = (4\pi G)^{-1}$ The unit determinant condition $u^2 + p^2/\kappa^2 = 1 \Longrightarrow$



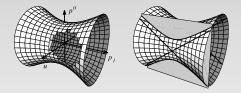
 p^{μ} are *embedding coordinates on AdS space*; basic relativistic properties:

Parametrize group elements: $h = u\mathbb{1} + \frac{p^{\mu}}{\kappa}\gamma_{\mu}$ with $\kappa = (4\pi G)^{-1}$ The unit determinant condition $u^2 + p^2/\kappa^2 = 1 \Longrightarrow$



 p^{μ} are embedding coordinates on AdS space; basic relativistic properties: • mass-shell condition: $p^2 = \kappa^2 \cos 4\pi Gm = m_{\kappa}$

Parametrize group elements: $h = u\mathbb{1} + \frac{p^{\mu}}{\kappa}\gamma_{\mu}$ with $\kappa = (4\pi G)^{-1}$ The unit determinant condition $u^2 + p^2/\kappa^2 = 1 \Longrightarrow$



 p^{μ} are *embedding coordinates on AdS space*; basic relativistic properties:

- mass-shell condition: $p^2 = \kappa^2 \cos 4\pi Gm = m_{\kappa}$
- Lorentz transformation: $h' = ghg^{-1}$, undeformed on p^{μ} e.g. boost in the 1-direction $g = e^{\frac{1}{2}\eta\gamma_2}$

$$\left\{ \begin{array}{l} p'^0 = p^0 \cosh \eta - p^1 \sinh \eta \\ p'^1 = p^1 \cosh \eta - p^0 \sinh \eta \\ p'^2 = p^2 \end{array} \right.$$

Elementary one-particle Hilbert space \mathcal{H} : irreps of Poincaré group

- basis of ${\cal H}$ given by **eigenstates** of the translation generators $P_\mu |k
angle = k_\mu |k
angle$

- basis of ${\cal H}$ given by **eigenstates** of the translation generators $P_\mu |k
 angle = k_\mu |k
 angle$
- action on dual space \mathcal{H}^* spanned by bras: $P_\mu\langle k|=-k_\mu\langle k|$

- basis of ${\cal H}$ given by **eigenstates** of the translation generators $P_\mu |k
 angle = k_\mu |k
 angle$
- action on dual space \mathcal{H}^* spanned by bras: $P_{\mu}\langle k| = -k_{\mu}\langle k| \equiv \langle k|S(P_{\mu})$

Elementary one-particle Hilbert space \mathcal{H} : irreps of Poincaré group

- basis of $\mathcal H$ given by **eigenstates** of the translation generators $P_{\mu}|k
 angle=k_{\mu}|k
 angle$
- action on dual space \mathcal{H}^* spanned by bras: $P_{\mu}\langle k| = -k_{\mu}\langle k| \equiv \langle k|S(P_{\mu})$
- action on **composite state** $\mathcal{H} \otimes \mathcal{H}$:

 $P_{\mu}(\ket{k_1}\otimes\ket{k_2})=P_{\mu}\ket{k_1}\otimes\ket{k_2}+\ket{k_1}\otimes P_{\mu}\ket{k_2}$

Elementary one-particle Hilbert space \mathcal{H} : irreps of Poincaré group

- basis of ${\cal H}$ given by **eigenstates** of the translation generators $P_\mu |k
 angle = k_\mu |k
 angle$
- action on dual space \mathcal{H}^* spanned by bras: $P_{\mu}\langle k| = -k_{\mu}\langle k| \equiv \langle k|S(P_{\mu})$
- action on **composite state** $\mathcal{H} \otimes \mathcal{H}$:

 $P_{\mu}(|k_1
angle\otimes|k_2
angle)=P_{\mu}|k_1
angle\otimes|k_2
angle+|k_1
angle\otimes P_{\mu}|k_2
angle\equiv\Delta P_{\mu}|k_1
angle\otimes|k_2
angle$

- basis of $\mathcal H$ given by **eigenstates** of the translation generators $P_{\mu}|k
 angle=k_{\mu}|k
 angle$
- action on dual space \mathcal{H}^* spanned by bras: $P_{\mu}\langle k| = -k_{\mu}\langle k| \equiv \langle k|S(P_{\mu})$
- action on composite state $\mathcal{H} \otimes \mathcal{H}$: $P_{\mu}(|k_1\rangle \otimes |k_2\rangle) = P_{\mu}|k_1\rangle \otimes |k_2\rangle + |k_1\rangle \otimes P_{\mu}|k_2\rangle \equiv \Delta P_{\mu}|k_1\rangle \otimes |k_2\rangle$ "Antipode": $S(P_{\mu}) = -P_{\mu}$, "Co-product": $\Delta P_{\mu} = P_{\mu} \otimes \mathbb{1} + \mathbb{1} \otimes P_{\mu}$

- basis of $\mathcal H$ given by **eigenstates** of the translation generators $P_{\mu}|k
 angle=k_{\mu}|k
 angle$
- action on dual space \mathcal{H}^* spanned by bras: $P_{\mu}\langle k| = -k_{\mu}\langle k| \equiv \langle k|S(P_{\mu})$
- action on composite state H ⊗ H: P_μ(|k₁⟩ ⊗ |k₂⟩) = P_μ|k₁⟩ ⊗ |k₂⟩ + |k₁⟩ ⊗ P_μ|k₂⟩ ≡ ΔP_μ|k₁⟩ ⊗ |k₂⟩ "Antipode": S(P_μ) = -P_μ, "Co-product": ΔP_μ = P_μ ⊗ 1 + 1 ⊗ P_μ Hopf algebra notions "built in" in everyday quantum theory..

- basis of $\mathcal H$ given by **eigenstates** of the translation generators $P_{\mu}|k
 angle=k_{\mu}|k
 angle$
- action on dual space \mathcal{H}^* spanned by bras: $P_{\mu}\langle k| = -k_{\mu}\langle k| \equiv \langle k|S(P_{\mu})$
- action on composite state $\mathcal{H} \otimes \mathcal{H}$: $P_{\mu}(|k_1\rangle \otimes |k_2\rangle) = P_{\mu}|k_1\rangle \otimes |k_2\rangle + |k_1\rangle \otimes P_{\mu}|k_2\rangle \equiv \Delta P_{\mu}|k_1\rangle \otimes |k_2\rangle$ "Antipode": $S(P_{\mu}) = -P_{\mu}$, "Co-product": $\Delta P_{\mu} = P_{\mu} \otimes \mathbb{1} + \mathbb{1} \otimes P_{\mu}$ Hopf algebra notions "built in" in everyday quantum theory..
- these notions suffice to derive action of P_{μ} on **operators**...take e.g. $\pi_k = |k\rangle \langle k|$

Elementary one-particle Hilbert space \mathcal{H} : irreps of Poincaré group

- basis of \mathcal{H} given by **eigenstates** of the translation generators $P_{\mu}|k\rangle = k_{\mu}|k\rangle$
- action on dual space \mathcal{H}^* spanned by bras: $P_{\mu}\langle k| = -k_{\mu}\langle k| \equiv \langle k|S(P_{\mu})$
- action on composite state $\mathcal{H} \otimes \mathcal{H}$: $P_{\mu}(|k_1\rangle \otimes |k_2\rangle) = P_{\mu}|k_1\rangle \otimes |k_2\rangle + |k_1\rangle \otimes P_{\mu}|k_2\rangle \equiv \Delta P_{\mu}|k_1\rangle \otimes |k_2\rangle$ "Antipode": $S(P_{\mu}) = -P_{\mu}$, "Co-product": $\Delta P_{\mu} = P_{\mu} \otimes \mathbb{1} + \mathbb{1} \otimes P_{\mu}$ Hopf algebra notions "built in" in everyday quantum theory..
- these notions suffice to derive action of P_{μ} on **operators**...take e.g. $\pi_k = |k\rangle \langle k|$

 $\begin{aligned} P_{\mu}(\pi_{k}) &= P_{\mu}(|k\rangle\langle k|) = \\ &= P_{\mu}(|k\rangle)\langle k| + |k\rangle P_{\mu}(\langle k|) = P_{\mu}|k\rangle\langle k| - |k\rangle\langle k|P_{\mu} = [P_{\mu}, \pi_{k}] \end{aligned}$

Elementary one-particle Hilbert space \mathcal{H} : irreps of Poincaré group

- basis of \mathcal{H} given by **eigenstates** of the translation generators $P_{\mu}|k\rangle = k_{\mu}|k\rangle$
- action on dual space \mathcal{H}^* spanned by bras: $P_{\mu}\langle k| = -k_{\mu}\langle k| \equiv \langle k|S(P_{\mu})$
- action on composite state H ⊗ H: P_μ(|k₁⟩ ⊗ |k₂⟩) = P_μ|k₁⟩ ⊗ |k₂⟩ + |k₁⟩ ⊗ P_μ|k₂⟩ ≡ ΔP_μ|k₁⟩ ⊗ |k₂⟩ "Antipode": S(P_μ) = -P_μ, "Co-product": ΔP_μ = P_μ ⊗ 1 + 1 ⊗ P_μ Hopf algebra notions "built in" in everyday quantum theory..
- these notions suffice to derive action of P_{μ} on **operators**...take e.g. $\pi_k = |k\rangle\langle k|$

 $\begin{aligned} P_{\mu}(\pi_{k}) &= P_{\mu}(|k\rangle\langle k|) = \\ &= P_{\mu}(|k\rangle)\langle k| + |k\rangle P_{\mu}(\langle k|) = P_{\mu}|k\rangle\langle k| - |k\rangle\langle k|P_{\mu} = [P_{\mu}, \pi_{k}] \end{aligned}$

i.e. just the familiar **adjoint action**... **N.B.** Using the spectral theorem any operator can be written in terms of a combination of projectors $|k\rangle\langle k|$

Michele Arzano - Is purity eternal at the Planck scale?

Deformation of symmetry generators provide a generalization of these basic notions

Deformation of symmetry generators provide a generalization of these basic notions

• $|\pi
angle$ labelled by coordinates on a non-abelian Lie group

$$P_\mu |\pi
angle = \mathcal{P}_\mu (\pi) |\pi
angle = \pi_\mu |\pi
angle$$

Deformation of symmetry generators provide a generalization of these basic notions

• $|\pi
angle$ labelled by coordinates on a non-abelian Lie group

$$P_{\mu}|\pi
angle=\mathcal{P}_{\mu}(\pi)|\pi
angle=\pi_{\mu}|\pi
angle$$

for action on bras the non-trivial structure of momentum space comes into play

$$P_{\mu}\langle \pi | = \mathcal{P}_{\mu}(\pi^{-1})\langle \pi | \equiv \langle \pi | S(P_{\mu}) \rangle$$

action on multi-particle states also non-trivial

 $P_{\mu}(|\pi_1
angle\otimes|\pi_2
angle)=\mathcal{P}_{\mu}(\pi_1\cdot\pi_2)|\pi_1
angle\otimes|\pi_2
angle\equiv\Delta P_{\mu}|\pi_1
angle\otimes|\pi_2
angle$

Deformation of symmetry generators provide a generalization of these basic notions

• $|\pi\rangle$ labelled by coordinates on a non-abelian Lie group

$$P_{\mu}|\pi
angle=\mathcal{P}_{\mu}(\pi)|\pi
angle=\pi_{\mu}|\pi
angle$$

• for action on bras the non-trivial structure of momentum space comes into play

$$P_{\mu}\langle \pi | = \mathcal{P}_{\mu}(\pi^{-1})\langle \pi | \equiv \langle \pi | S(P_{\mu}) \rangle$$

• action on multi-particle states also non-trivial

 $P_{\mu}(|\pi_1
angle\otimes|\pi_2
angle)=\mathcal{P}_{\mu}(\pi_1\cdot\pi_2)|\pi_1
angle\otimes|\pi_2
angle\equiv\Delta P_{\mu}|\pi_1
angle\otimes|\pi_2
angle$

composition rule of momentum eigenvalues is deformed

 $\mathcal{P}_{\mu}(\pi_1\cdot\pi_2)\equiv\mathcal{P}_{\mu}(\pi_1)\oplus\mathcal{P}_{\mu}(\pi_2)
eq\mathcal{P}_{\mu}(\pi_2\cdot\pi_1)\,,$

Deformation of symmetry generators provide a generalization of these basic notions

• $|\pi
angle$ labelled by coordinates on a non-abelian Lie group

$$P_{\mu}|\pi
angle=\mathcal{P}_{\mu}(\pi)|\pi
angle=\pi_{\mu}|\pi
angle$$

for action on bras the non-trivial structure of momentum space comes into play

$$P_{\mu}\langle \pi | = \mathcal{P}_{\mu}(\pi^{-1})\langle \pi | \equiv \langle \pi | S(P_{\mu}) \rangle$$

• action on multi-particle states also non-trivial

 $P_{\mu}(|\pi_1
angle\otimes|\pi_2
angle)=\mathcal{P}_{\mu}(\pi_1\cdot\pi_2)|\pi_1
angle\otimes|\pi_2
angle\equiv\Delta P_{\mu}|\pi_1
angle\otimes|\pi_2
angle$

composition rule of momentum eigenvalues is deformed

 $\mathcal{P}_{\mu}(\pi_{1}\cdot\pi_{2})\equiv\mathcal{P}_{\mu}(\pi_{1})\oplus\mathcal{P}_{\mu}(\pi_{2})\neq\mathcal{P}_{\mu}(\pi_{2}\cdot\pi_{1})\,,\ \mathcal{P}_{\mu}(\pi)\oplus\mathcal{P}_{\mu}(\pi^{-1})=\mathcal{P}_{\mu}(\mathbb{1})=0$

Deformation of symmetry generators provide a generalization of these basic notions

• $|\pi
angle$ labelled by coordinates on a non-abelian Lie group

$$P_{\mu}|\pi
angle=\mathcal{P}_{\mu}(\pi)|\pi
angle=\pi_{\mu}|\pi
angle$$

• for action on bras the non-trivial structure of momentum space comes into play

$$P_{\mu}\langle \pi | = \mathcal{P}_{\mu}(\pi^{-1})\langle \pi | \equiv \langle \pi | S(P_{\mu}) \rangle$$

• action on multi-particle states also non-trivial

 $P_{\mu}(|\pi_1
angle\otimes|\pi_2
angle)= rac{\mathcal{P}_{\mu}(\pi_1\cdot\pi_2)}{|\pi_1
angle\otimes|\pi_2
angle}\equiv\Delta P_{\mu}|\pi_1
angle\otimes|\pi_2
angle$

• composition rule of momentum eigenvalues is deformed

 $\mathcal{P}_{\mu}(\pi_{1}\cdot\pi_{2})\equiv\mathcal{P}_{\mu}(\pi_{1})\oplus\mathcal{P}_{\mu}(\pi_{2})\neq\mathcal{P}_{\mu}(\pi_{2}\cdot\pi_{1})\,,\ \mathcal{P}_{\mu}(\pi)\oplus\mathcal{P}_{\mu}(\pi^{-1})=\mathcal{P}_{\mu}(\mathbb{1})=0$

In Hopf algebraic lingo: **co-product** ΔP_{μ} and **antipode** of $S(P_{\mu})$ non-trivial

Deformation of symmetry generators provide a generalization of these basic notions

• $|\pi
angle$ labelled by coordinates on a non-abelian Lie group

$$P_{\mu}|\pi
angle=\mathcal{P}_{\mu}(\pi)|\pi
angle=\pi_{\mu}|\pi
angle$$

• for action on bras the non-trivial structure of momentum space comes into play

$$P_{\mu}\langle \pi | = \mathcal{P}_{\mu}(\pi^{-1})\langle \pi | \equiv \langle \pi | S(P_{\mu}) \rangle$$

• action on multi-particle states also non-trivial

 $P_{\mu}(|\pi_1
angle\otimes|\pi_2
angle)=\mathcal{P}_{\mu}(\pi_1\cdot\pi_2)|\pi_1
angle\otimes|\pi_2
angle\equiv\Delta P_{\mu}|\pi_1
angle\otimes|\pi_2
angle$

• composition rule of momentum eigenvalues is deformed

 $\mathcal{P}_{\mu}(\pi_{1}\cdot\pi_{2})\equiv\mathcal{P}_{\mu}(\pi_{1})\oplus\mathcal{P}_{\mu}(\pi_{2})\neq\mathcal{P}_{\mu}(\pi_{2}\cdot\pi_{1})\,,\ \, \mathcal{P}_{\mu}(\pi)\oplus\mathcal{P}_{\mu}(\pi^{-1})=\mathcal{P}_{\mu}(\mathbb{1})=0$

In Hopf algebraic lingo: **co-product** ΔP_{μ} and **antipode** of $S(P_{\mu})$ non-trivial

Key point: the action on operators will be deformed accordingly

Deformed translations and Lindblad evolution in three dimensions

For the deformed translation generators associated to $SL(2,\mathbb{R})$ momentum space:

$$\Delta P_{\mu} = P_{\mu} \otimes \mathbb{1} + \mathbb{1} \otimes P_{\mu} + rac{1}{\kappa} \epsilon_{\mu
u\sigma} P^{
u} \otimes P^{\sigma} + \mathcal{O}\left(rac{1}{\kappa^2}
ight) \,, \;\; S(P_{\mu}) = -P_{\mu} \,.$$

Deformed translations and Lindblad evolution in three dimensions

For the deformed translation generators associated to $SL(2,\mathbb{R})$ momentum space:

$$\Delta P_\mu = P_\mu \otimes \mathbb{1} + \mathbb{1} \otimes P_\mu + rac{1}{\kappa} \epsilon_{\mu
u\sigma} \mathcal{P}^
u \otimes \mathcal{P}^\sigma + \mathcal{O}\left(rac{1}{\kappa^2}
ight) \,, \;\; \mathcal{S}(P_\mu) = -P_\mu \,.$$

 ΔP_0 and $S(P_0)$ determine the action of time transl. generator P_0 on an operator ρ

$$\operatorname{ad}_{P_0}(\rho) = [P_0, \rho] - \frac{1}{\kappa} \epsilon_{0ij} P^i \rho P^j$$

Deformed translations and Lindblad evolution in three dimensions

For the deformed translation generators associated to $SL(2,\mathbb{R})$ momentum space:

$$\Delta P_\mu = P_\mu \otimes \mathbb{1} + \mathbb{1} \otimes P_\mu + rac{1}{\kappa} \epsilon_{\mu
u\sigma} \mathcal{P}^
u \otimes \mathcal{P}^\sigma + \mathcal{O}\left(rac{1}{\kappa^2}
ight) \,, \;\; \mathcal{S}(P_\mu) = -P_\mu \,.$$

 ΔP_0 and $S(P_0)$ determine the action of time transl. generator P_0 on an operator ρ

$$\operatorname{ad}_{P_0}(\rho) = [P_0, \rho] - \frac{1}{\kappa} \epsilon_{0ij} P^i \rho P^j$$

which leads to a Lindlblad equation

$$\dot{\rho} = -i[P_0,\rho] - \frac{1}{2}h_{ij}\left(P^iP^j\rho + \rho P^jP^i - 2P^j\rho P^i\right)$$

with "decoherence" matrix given by

$$h = rac{i}{\kappa} egin{pmatrix} 0 & 0 & 0 \ 0 & 0 & 1 \ 0 & -1 & 0 \end{pmatrix}$$

$$\dot{
ho} = -i[P_0,
ho] - rac{1}{2}h_{ij}\left(P^iP^j
ho +
ho P^jP^i - 2P^j
ho P^i
ight), \quad h = rac{i}{\kappa} egin{pmatrix} 0 & 0 & 0 \ 0 & 0 & 1 \ 0 & -1 & 0 \end{pmatrix}$$

$$\dot{
ho} = -i[P_0,
ho] - rac{1}{2}h_{ij}\left(P^iP^j
ho +
ho P^jP^i - 2P^j
ho P^i
ight), \quad h = rac{i}{\kappa} egin{pmatrix} 0 & 0 & 0 \ 0 & 0 & 1 \ 0 & -1 & 0 \end{pmatrix}$$

• Lindblad evolution preserves trace and hermiticity of ρ by construction,

$$\dot{
ho} = -i[P_0,
ho] - rac{1}{2}h_{ij}\left(P^iP^j
ho +
ho P^jP^i - 2P^j
ho P^i
ight), \quad h = rac{i}{\kappa} egin{pmatrix} 0 & 0 & 0 \ 0 & 0 & 1 \ 0 & -1 & 0 \end{pmatrix}$$

• Lindblad evolution preserves trace and hermiticity of ρ by construction, conservation of **positivity** *is not* automatically guaranteed

$$\dot{
ho} = -i[P_0,
ho] - rac{1}{2}h_{ij}\left(P^iP^j
ho +
ho P^jP^i - 2P^j
ho P^i
ight), \quad h = rac{i}{\kappa} egin{pmatrix} 0 & 0 & 0 \ 0 & 0 & 1 \ 0 & -1 & 0 \end{pmatrix}$$

- Lindblad evolution preserves trace and hermiticity of ρ by construction, conservation of **positivity** *is not* automatically guaranteed
- BPS showed that
 - h positive definite \implies positivity of ρ is preserved

$$\dot{
ho} = -i[P_0,
ho] - rac{1}{2}h_{ij}\left(P^iP^j
ho +
ho P^jP^i - 2P^j
ho P^i
ight), \quad h = rac{i}{\kappa} egin{pmatrix} 0 & 0 & 0 \ 0 & 0 & 1 \ 0 & -1 & 0 \end{pmatrix}$$

- Lindblad evolution preserves trace and hermiticity of ρ by construction, conservation of **positivity** *is not* automatically guaranteed
- BPS showed that
 - *h positive definite* \implies **positivity** of ρ is preserved
 - in addition h real \implies entropy *increases* with evolution

$$\dot{
ho} = -i[P_0,
ho] - rac{1}{2}h_{ij}\left(P^iP^j
ho +
ho P^jP^i - 2P^j
ho P^i
ight), \quad h = rac{i}{\kappa} egin{pmatrix} 0 & 0 & 0 \ 0 & 0 & 1 \ 0 & -1 & 0 \end{pmatrix}$$

- Lindblad evolution preserves trace and hermiticity of ρ by construction, conservation of **positivity** *is not* automatically guaranteed
- BPS showed that
 - *h positive definite* \implies **positivity** of ρ is preserved
 - ▶ in addition h real ⇒ entropy increases with evolution
 - energy is conserved if operators in *decoherence term* commute with P₀

$$\dot{
ho} = -i[P_0,
ho] - rac{1}{2}h_{ij}\left(P^iP^j
ho +
ho P^jP^i - 2P^j
ho P^i
ight), \quad h = rac{i}{\kappa} egin{pmatrix} 0 & 0 & 0 \ 0 & 0 & 1 \ 0 & -1 & 0 \end{pmatrix}$$

- Lindblad evolution preserves trace and hermiticity of ρ by construction, conservation of **positivity** *is not* automatically guaranteed
- BPS showed that
 - *h* positive definite \implies **positivity** of ρ is preserved
 - in addition h real \implies entropy *increases* with evolution
 - energy is conserved if operators in decoherence term commute with P₀
- Srednicki tells us that requirement of energy conservation **not compatible** with Lorentz covariance

Some remarks

$$\dot{
ho} = -i[P_0,
ho] - rac{1}{2}h_{ij}\left(P^iP^j
ho +
ho P^jP^i - 2P^j
ho P^i
ight), \quad h = rac{i}{\kappa} egin{pmatrix} 0 & 0 & 0 \ 0 & 0 & 1 \ 0 & -1 & 0 \end{pmatrix}$$

- Lindblad evolution preserves trace and hermiticity of ρ by construction, conservation of **positivity** *is not* automatically guaranteed
- BPS showed that
 - *h* positive definite \implies **positivity** of ρ is preserved
 - in addition h real \implies entropy *increases* with evolution
 - energy is conserved if operators in *decoherence term* commute with P₀
- Srednicki tells us that requirement of energy conservation **not compatible** with Lorentz covariance
- Lindblad eq. above conserves energy and is Lorentz covariant...what's going on?

Some remarks

$$\dot{
ho} = -i[P_0,
ho] - rac{1}{2}h_{ij}\left(P^iP^j
ho +
ho P^jP^i - 2P^j
ho P^i
ight), \quad h = rac{i}{\kappa} egin{pmatrix} 0 & 0 & 0 \ 0 & 0 & 1 \ 0 & -1 & 0 \end{pmatrix}$$

- Lindblad evolution preserves trace and hermiticity of ρ by construction, conservation of **positivity** *is not* automatically guaranteed
- BPS showed that
 - *h* positive definite \implies **positivity** of ρ is preserved
 - in addition h real \implies entropy *increases* with evolution
 - energy is conserved if operators in *decoherence term* commute with P₀
- Srednicki tells us that requirement of energy conservation **not compatible** with Lorentz covariance
- Lindblad eq. above conserves energy and is Lorentz covariant...what's going on?

BPS, Srednicki et al. restricted to real and positive definite h!

Some remarks

$$\dot{
ho} = -i[P_0,
ho] - rac{1}{2}h_{ij}\left(P^iP^j
ho +
ho P^jP^i - 2P^j
ho P^i
ight), \quad h = rac{i}{\kappa} egin{pmatrix} 0 & 0 & 0 \ 0 & 0 & 1 \ 0 & -1 & 0 \end{pmatrix}$$

- Lindblad evolution preserves trace and hermiticity of ρ by construction, conservation of **positivity** *is not* automatically guaranteed
- BPS showed that
 - *h* positive definite \implies **positivity** of ρ is preserved
 - in addition h real \implies entropy *increases* with evolution
 - energy is conserved if operators in *decoherence term* commute with P₀
- Srednicki tells us that requirement of energy conservation **not compatible** with Lorentz covariance
- Lindblad eq. above conserves energy and is Lorentz covariant...what's going on?

BPS, Srednicki et al. restricted to *real* and *positive definite h*! In our case *h* is not positive definite nor real

Further work needed to establish properties of our Lindblad evolution...

Can the picture be generalized to the four-dimensional case?

Yes

Can the picture be generalized to the four-dimensional case?

Yes

 κ-Poincaré: deformation of relativistic symmetries governed by UV-scale κ (Lukierski, Nowicki and Ruegg, Phys. Lett. B 293, 344 (1992))

Can the picture be generalized to the four-dimensional case?

Yes

- κ-Poincaré: deformation of relativistic symmetries governed by UV-scale κ (Lukierski, Nowicki and Ruegg, Phys. Lett. B 293, 344 (1992))
- Structural analogies of momentum sector with 3d case only recently appreciated...

Can the picture be generalized to the four-dimensional case?

Yes

- κ-Poincaré: deformation of relativistic symmetries governed by UV-scale κ (Lukierski, Nowicki and Ruegg, Phys. Lett. B 293, 344 (1992))
- Structural analogies of momentum sector with 3d case only recently appreciated...

 κ -momenta: coordinates on Lie group AN(3) obtained form the Iwasawa decomposition of $SO(4,1) \simeq SO(3,1)AN(3)$, sub-manifold of dS_4

$$-p_0^2 + p_1^2 + p_2^2 + p_3^2 + p_4^2 = \kappa^2;$$
 $p_0 + p_4 > 0$

with $\kappa \sim E_{Planck}$

These structures have been advocated as encoding the kinematics of a "Minkowskilimit" of quantum gravity...deformed relativistic kinematics at the Planck scale

In parallel with 3d case we consider **translation generators** P_{μ} associated to *embedding* coordinates p_{μ} on dS_4

In parallel with 3d case we consider translation generators P_{μ} associated to *embedding* coordinates p_{μ} on dS_4

Their co-products and antipodes at leading order in κ

$$\begin{split} \Delta(P_0) &= P_0 \otimes \mathbb{1} + \mathbb{1} \otimes P_0 + \frac{1}{\kappa} P_m \otimes P_m \,, \\ \Delta(P_i) &= P_i \otimes \mathbb{1} + \mathbb{1} \otimes P_i + \frac{1}{\kappa} P_i \otimes P_0 \,, \\ S(P_0) &= -P_0 + \frac{1}{\kappa} \vec{P}^2 \,, \\ S(P_i) &= -P_i + \frac{1}{\kappa} P_i \, P_0 \,, \end{split}$$

In parallel with 3d case we consider translation generators P_{μ} associated to *embedding* coordinates p_{μ} on dS_4

Their co-products and antipodes at leading order in κ

$$\begin{split} \Delta(P_0) &= P_0 \otimes \mathbb{1} + \mathbb{1} \otimes P_0 + \frac{1}{\kappa} P_m \otimes P_m \,, \\ \Delta(P_i) &= P_i \otimes \mathbb{1} + \mathbb{1} \otimes P_i + \frac{1}{\kappa} P_i \otimes P_0 \,, \\ S(P_0) &= -P_0 + \frac{1}{\kappa} \vec{P}^2 \,, \\ S(P_i) &= -P_i + \frac{1}{\kappa} P_i \, P_0 \,, \end{split}$$

this basis of κ -Poincaré is called "classical" because

• action of Lorentz sector on P_{μ} in **undeformed**;

In parallel with 3d case we consider translation generators P_{μ} associated to *embedding* coordinates p_{μ} on dS_4

Their co-products and antipodes at leading order in κ

$$\begin{split} \Delta(P_0) &= P_0 \otimes \mathbb{1} + \mathbb{1} \otimes P_0 + \frac{1}{\kappa} P_m \otimes P_m \,, \\ \Delta(P_i) &= P_i \otimes \mathbb{1} + \mathbb{1} \otimes P_i + \frac{1}{\kappa} P_i \otimes P_0 \,, \\ S(P_0) &= -P_0 + \frac{1}{\kappa} \vec{P}^2 \,, \\ S(P_i) &= -P_i + \frac{1}{\kappa} P_i \, P_0 \,, \end{split}$$

this basis of $\kappa\text{-Poincaré}$ is called "classical" because

- action of Lorentz sector on P_{μ} in **undeformed**;
- mass-shell condition undeformed $P_0^2 \vec{P}^2 = const$

In parallel with 3d case we consider translation generators P_{μ} associated to *embedding* coordinates p_{μ} on dS_4

Their co-products and antipodes at leading order in κ

$$\begin{split} \Delta(P_0) &= P_0 \otimes \mathbb{1} + \mathbb{1} \otimes P_0 + \frac{1}{\kappa} P_m \otimes P_m \,, \\ \Delta(P_i) &= P_i \otimes \mathbb{1} + \mathbb{1} \otimes P_i + \frac{1}{\kappa} P_i \otimes P_0 \,, \\ S(P_0) &= -P_0 + \frac{1}{\kappa} \vec{P}^2 \,, \\ S(P_i) &= -P_i + \frac{1}{\kappa} P_i \, P_0 \,, \end{split}$$

this basis of $\kappa\text{-Poincaré}$ is called "classical" because

- action of Lorentz sector on P_{μ} in **undeformed**;
- mass-shell condition undeformed $P_0^2 \vec{P}^2 = const$

In embedding coordinates we have *ordinary relativistic kinematics* at the **one-particle** level...all non-trivial structures confined to "co-algebra" sector

Deformed Lindblad evolution from κ -translations

A straightforward calculation of $ad_{P_0}(\rho)$ leads to a *non-symmetric* Lindblad equation

$$\dot{\rho} = -i[P_0,\rho] + rac{i}{\kappa} P_m \rho P_m - rac{i}{\kappa}
ho \vec{P}^2$$

From a comparison with 3d case we would expect an extra $\vec{P}^2 \rho$ term...

Deformed Lindblad evolution from κ -translations

A straightforward calculation of $ad_{P_0}(\rho)$ leads to a *non-symmetric* Lindblad equation

$$\dot{\rho} = -i[P_0,\rho] + rac{i}{\kappa} P_m \rho P_m - rac{i}{\kappa}
ho \vec{P}^2$$

From a comparison with 3d case we would expect an extra $\vec{P}^2 \rho$ term...

...non-trivial antipode $S(P_0)$ leads to deformed notion of hermitian adjoint: $(ad_{P_0}(\cdot))^{\dagger} \equiv ad_{S(P_0)}(\cdot)$

Deformed Lindblad evolution from $\kappa\text{-translations}$

A straightforward calculation of $ad_{P_0}(\rho)$ leads to a *non-symmetric* Lindblad equation

$$\dot{\rho} = -i[P_0,\rho] + \frac{i}{\kappa}P_m\rho P_m - \frac{i}{\kappa}\rho \vec{P}^2$$

From a comparison with 3d case we would expect an extra $\vec{P}^2 \rho$ term...

...non-trivial antipode $S(P_0)$ leads to deformed notion of **hermitian adjoint**: $(\operatorname{ad}_{P_0}(\cdot))^{\dagger} \equiv \operatorname{ad}_{S(P_0)}(\cdot)$

While in 3d the Lindblad equation was covariant in "ordinary" sense, here:

• momenta p_{μ} transform as ordinary **Lorentz four-vectors** and the translation generators P_{μ} close **undeformed** algebra

Deformed Lindblad evolution from κ -translations

A straightforward calculation of $ad_{P_0}(\rho)$ leads to a *non-symmetric* Lindblad equation

$$\dot{\rho} = -i[P_0,\rho] + \frac{i}{\kappa}P_m\rho P_m - \frac{i}{\kappa}\rho \vec{P}^2$$

From a comparison with 3d case we would expect an extra $\vec{P}^2 \rho$ term...

...non-trivial antipode $S(P_0)$ leads to deformed notion of **hermitian adjoint**: $(\operatorname{ad}_{P_0}(\cdot))^{\dagger} \equiv \operatorname{ad}_{S(P_0)}(\cdot)$

While in 3d the Lindblad equation was covariant in "ordinary" sense, here:

- momenta p_{μ} transform as ordinary **Lorentz four-vectors** and the translation generators P_{μ} close **undeformed** algebra
- the adjoint action of boosts on an operator is **deformed**:

$$\mathrm{ad}_{N_i}(\rho) = [N_i, \rho] + \frac{1}{\kappa} [P_0, \rho] N_i + \frac{1}{\kappa} \epsilon^{ijm} [P_j, \rho] M_m$$

Deformed Lindblad evolution from κ -translations

A straightforward calculation of $\operatorname{ad}_{P_0}(\rho)$ leads to a *non-symmetric* Lindblad equation

$$\dot{\rho} = -i[P_0,\rho] + \frac{i}{\kappa}P_m\rho P_m - \frac{i}{\kappa}\rho \vec{P}^2$$

From a comparison with 3d case we would expect an extra $\vec{P}^2 \rho$ term...

...non-trivial antipode $S(P_0)$ leads to deformed notion of **hermitian adjoint**: $(\operatorname{ad}_{P_0}(\cdot))^{\dagger} \equiv \operatorname{ad}_{S(P_0)}(\cdot)$

While in 3d the Lindblad equation was covariant in "ordinary" sense, here:

- momenta p_{μ} transform as ordinary **Lorentz four-vectors** and the translation generators P_{μ} close **undeformed** algebra
- the adjoint action of boosts on an operator is deformed:

$$\mathrm{ad}_{N_i}(
ho) = [N_i,
ho] + rac{1}{\kappa} [P_0,
ho] N_i + rac{1}{\kappa} \epsilon^{ijm} [P_j,
ho] M_m$$

the adjoint actions of N_i and P₀ satisfy

$$\mathrm{ad}_{\mathrm{ad}N_i(P_0)}(\cdot) = \mathrm{ad}_{N_i}(\mathrm{ad}_{P_0})(\cdot) - \mathrm{ad}_{P_0}(\mathrm{ad}_{N_i})(\cdot)$$

in this sense the $\kappa\text{-Lindblad}$ equation follows a deformed notion of covariance

Group valued momenta and deformed translations provide a natural framework for fundamental departures from ordinary time evolution

• In 3d gravity "topological back-reaction" leads to deformed translations

- In 3d gravity "topological back-reaction" leads to deformed translations
 - group valued momenta \Rightarrow non-trivial co-product \Rightarrow covariant Lindblad eq.

- In 3d gravity "topological back-reaction" leads to deformed translations
 - group valued momenta \Rightarrow non-trivial co-product \Rightarrow covariant Lindblad eq.
 - remarkable: correction term proportional to Newton's constant G!

- In 3d gravity "topological back-reaction" leads to deformed translations
 - group valued momenta \Rightarrow non-trivial co-product \Rightarrow covariant Lindblad eq.
 - remarkable: correction term proportional to Newton's constant G!
- In 4d κ-Poincaré mimics structures found in 3d gravity

- In 3d gravity "topological back-reaction" leads to deformed translations
 - group valued momenta \Rightarrow non-trivial co-product \Rightarrow covariant Lindblad eq.
 - remarkable: correction term proportional to Newton's constant G!
- In 4d κ-Poincaré mimics structures found in 3d gravity
 - group-valued momenta \Rightarrow non-trivial co-product AND antipode

- In 3d gravity "topological back-reaction" leads to deformed translations
 - group valued momenta \Rightarrow non-trivial co-product \Rightarrow covariant Lindblad eq.
 - remarkable: correction term proportional to Newton's constant G!
- In 4d κ-Poincaré mimics structures found in 3d gravity
 - group-valued momenta \Rightarrow non-trivial co-product AND antipode
 - ► "classical basis" time translation ⇒ non-symmetric Lindblad eq. and deformed covariance

- In 3d gravity "topological back-reaction" leads to deformed translations
 - group valued momenta \Rightarrow non-trivial co-product \Rightarrow covariant Lindblad eq.
 - remarkable: correction term proportional to Newton's constant G!
- In 4d κ-Poincaré mimics structures found in 3d gravity
 - group-valued momenta \Rightarrow non-trivial co-product AND antipode
 - ► "classical basis" time translation ⇒ non-symmetric Lindblad eq. and deformed covariance

• Is generalized time evolution physically acceptable? i.e. does it preserve positivity of ρ ?

- Is generalized time evolution physically acceptable? i.e. does it preserve positivity of ρ ?
- ...use to **discriminate** between *physical* and *un-physical* models of deformed translations?

- Is generalized time evolution physically acceptable? i.e. does it preserve positivity of ρ ?
- ...use to **discriminate** between *physical* and *un-physical* models of deformed translations?
- What is the **fate of** *unitarity* in these models: is it *violated* or just *deformed*? (need to work out finite time evolution)

- Is generalized time evolution physically acceptable? i.e. does it preserve positivity of ρ ?
- ...use to **discriminate** between *physical* and *un-physical* models of deformed translations?
- What is the **fate of** *unitarity* in these models: is it *violated* or just *deformed*? (need to work out finite time evolution)
- What role for can have **deformed translations** and quantum evolution for black hole **"unitarity crisis"**?? Can we evolve pure states into mixed states within a generalized notion of unitary evolution?

- Is generalized time evolution physically acceptable? i.e. does it preserve positivity of ρ ?
- ...use to **discriminate** between *physical* and *un-physical* models of deformed translations?
- What is the **fate of** *unitarity* in these models: is it *violated* or just *deformed*? (need to work out finite time evolution)
- What role for can have **deformed translations** and quantum evolution for black hole **"unitarity crisis"**?? Can we evolve pure states into mixed states within a generalized notion of unitary evolution?

Phenomenology of κ -Lindblad evolution? (Ellis et al. "Search for Violations of Quantum Mechanics," Nucl. Phys. B **241**, 381 (1984)); bounds on κ using **precision measurements of neutral kaon systems** (KLOE and KLOE-2 experiment)?