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What is an Open Quantum System?
The typical systems S we consider can be

A single spin (fermion)
A chain made of N spins
A single particle (boson)
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The environment E instead can be
A classical or quantum external field
A gas in thermodynamical equilibrium
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Open Quantum Systems
The common way to treat an Open Quantum System S

We consider the system S +
environment E as a closed system
We average on the degrees of freedom
of the environment
We look on the dynamics
of the system S alone

→ We obtain the reduced dynamics of
the system S

S - system

E - environment

S+E - Universe
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Brownian Motion
The Brownian Motion is considered as
the paradigm of an open system in the
classical and in the quantum case.

Modeled as a boson immersed in a gas
of particles at thermal equilibrium

Discovered by Brown (1828) as the
motion of pollen on the water surface

Its random motion is due to the
interaction with the water molecules
Einstein (1905) and Langevin (1908)
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Quantum Brownian Motion Reconsidered
Brownian Motion

Classical Brownian Motion

The classical effective description is given by the well known
Langevin equation

Mẍ(t) + ∂xV (x) + ηẋ(t) = F (t)

The acceleration depends on the external potential, viscous
Stokes term and the stochastic force F (t) is governed by

〈F (t)〉 = 0

〈F (t)F (s)〉 = 2ηKBTδ(t− s)
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Quantum Brownian Motion Reconsidered
Ullersma Model

Classical Brownian Motion
To obtain the Langevin equation from an Hamiltonian
approach we can consider the Ullersma Hamiltonian (1966)

H ≡ p2

2M
+ V (x) +

∑
k

P 2
k

2m
+
∑
k

1

2
mω2

k

(
Rk −

Ck

mω2
k

x

)2

Its quantized version is the Hamiltonian considered in the well
known Caldeira and Leggett article (1983)

6 / 26



Quantum Brownian Motion Reconsidered
Ullersma Model

Classical Brownian Motion
To obtain the Langevin equation from an Hamiltonian
approach we can consider the Ullersma Hamiltonian (1966)

H ≡ p2

2M
+ V (x) +

∑
k

P 2
k

2m
+
∑
k

1

2
mω2

k

(
Rk −

Ck

mω2
k

x

)2

Its quantized version is the Hamiltonian considered in the well
known Caldeira and Leggett article (1983)

6 / 26



Quantum Brownian Motion Reconsidered
Quantum Brownian Motion

Quantum Brownian Motion
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Quantum Brownian Motion Reconsidered
Quantum Brownian Motion

Interaction

Model for the interaction

The interaction Hamiltonian contains the coupling constants
Ck

ĤI ≡ x̂
∑
k

CkR̂k

In order to characterize the interaction we introduce the
spectral density J(ω)

J(ω) ≡
∑
k

C2
k

2mωk
δ(ω − ωk)

J(ω) describes how strong is the coupling constant Ck respect
to the correspondent environment frequency ωk
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Quantum Brownian Motion Reconsidered
Quantum Brownian Motion

Interaction

Spectral Density

9 / 26

J(ω) ≡
∑
k

C2
k

2mωk
δ(ω − ωk)

Martinazzo, Hughes, Martelli, Burghardt
J. Chem. Phys., 377, 2010

Adolphs and Renger
Biophys. J., 91(8), 2006
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Quantum Brownian Motion

Caldeira-Leggett Model

Caldeira-Leggett model

Caldeira and Leggett (1983) choose a
pure ohmic spectral density

J(ω) =
2Mγ

π
ω Θ(Ω− ω)

They obtain the Quantum Langevin
equation in limit of Ω→ +∞

¨̂x(t) + ω2
Rx̂(t) + 2γ ˙̂x(t) =

B̂(t)

M

where B̂(t) is described by
〈B̂(t)〉 and 〈B̂(t)B̂(s)〉

10 / 26



Quantum Brownian Motion Reconsidered
Quantum Brownian Motion

Caldeira-Leggett Model

Caldeira-Leggett model

Caldeira and Leggett (1983) choose a
pure ohmic spectral density

J(ω) =
2Mγ

π
ω Θ(Ω− ω)

They obtain the Quantum Langevin
equation in limit of Ω→ +∞

¨̂x(t) + ω2
Rx̂(t) + 2γ ˙̂x(t) =

B̂(t)

M

where B̂(t) is described by
〈B̂(t)〉 and 〈B̂(t)B̂(s)〉

10 / 26



Quantum Brownian Motion Reconsidered
Quantum Brownian Motion

Caldeira-Leggett Model

Caldeira-Leggett model

Caldeira and Leggett (1983) choose a
pure ohmic spectral density

J(ω) =
2Mγ

π
ω Θ(Ω− ω)

They obtain the Quantum Langevin
equation in limit of Ω→ +∞

¨̂x(t) + ω2
Rx̂(t) + 2γ ˙̂x(t) =

B̂(t)

M

where B̂(t) is described by
〈B̂(t)〉 and 〈B̂(t)B̂(s)〉 Timet0 t1 t2 t3

10 / 26



Quantum Brownian Motion Reconsidered
Quantum Brownian Motion

Caldeira-Leggett Model

Caldeira-Leggett model

Caldeira and Leggett (1983) choose a
pure ohmic spectral density

J(ω) =
2Mγ

π
ω Θ(Ω− ω)

They obtain the Quantum Langevin
equation in limit of Ω→ +∞

¨̂x(t) + ω2
Rx̂(t) + 2γ ˙̂x(t) =

B̂(t)

M

where B̂(t) is described by
〈B̂(t)〉 and 〈B̂(t)B̂(s)〉 Timet0 t1 t2 t3

10 / 26



Quantum Brownian Motion Reconsidered
Quantum Brownian Motion

Caldeira-Leggett Model

Caldeira-Leggett master equation

For this spectral density (Ω→ +∞) we have
〈B̂(t)〉 = 0
〈B̂(t)B̂(s)〉 diverges!

The high temperature limit β → 0 removes the divergence
and it results the Caldeira-Leggett master equation (1983)

dρ̂S(t)

dt
= − i

~
[Ĥ0, ρ̂S(t)]− iγ

~
[x̂, {p̂, ρ̂S(t)}]− 2Mγ

~2β
[x̂, [x̂, ρ̂S(t)]]

However this master equation is NOT POSITIVE.
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Quantum Brownian Motion Reconsidered
Quantum Brownian Motion

Hu-Paz-Zhang Model

Hu-Paz-Zhang master equation

Hu, Paz and Zhang (1992) provide instead a well defined
master equation for any physical spectral density J(ω).

The Hu-Paz-Zhang master equation is

dρ̂S(t)

dt
= − i

~

[
Ĥeff (t), ρ̂S(t)

]
− 1

2
K̃11(t) [[ρ̂S(t), x̂] , x̂] +

− iΓ(t)

~
[x̂, {p̂, ρ̂S(t)}]− K̃R

12(t) [[ρ̂S(t), x̂] , p̂]

It is a time dependent, exact, analytic and general solution.
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Ĥeff (t), ρ̂S(t)

]
− 1

2
K̃11(t) [[ρ̂S(t), x̂] , x̂] +

− iΓ(t)

~
[x̂, {p̂, ρ̂S(t)}]− K̃R

12(t) [[ρ̂S(t), x̂] , p̂]

It is a time dependent, exact, analytic and general solution.

12 / 26



Quantum Brownian Motion Reconsidered
Heisenberg picture

Heisenberg picture

d

dt
〈ÔS〉t =


Tr
[
ρ̂S(t)

dt
ÔS

]
Schrödinger picture

Tr

[
ρ̂S
dÔS(t)

dt

]
Heisenberg picture
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Heisenberg picture

The equation we look for is the adjoint master equation

d

dt
ÔS(t) = Lt

[
ÔS(t)

]

where the operator ÔS(t) is obtained as

ÔS(t) = Tr(B)
[
ρ̂B

(
Û†t ÔSÛt

)]
= Φt

[
ÔS

]
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Heisenberg picture

The von Neumann representation of the operators

ÔS =

∫
dλdµ O(λ, µ)χ̂S(λ, µ)

We describe the operator ÔS in terms of a kernel O(λ, µ) and
the structure of the albegra χ̂S(λ, µ)=exp(iλx̂+ iµp̂)

The dynamical map Φt acts only on χ̂S

Φt

[
ÔS

]
=

∫
dλdµ O(λ, µ)Φt [χ̂S(λ, µ)]
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Heisenberg picture
We consider the evolution of χ̂S(t) obtained as

χ̂S(t) = Tr(B)
[
ρ̂B

(
Û†t χ̂SÛt

)]
The time derivative is

dχ̂S(t)

dt
=
i

~

[
Ĥeff (t), χ̂S(t)

]
− 1

2
K11(t) [[χ̂S(t), x̂] , x̂] +

− iKI
12(t) {[χ̂S(t), p̂] , x̂} −KR

12(t) [[χ̂S(t), x̂] , p̂]

Therefore we have the

dχ̂S(t)

dt
= Lt [χ̂S(t)]
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Heisenberg picture
The evolution of the characteristic operator χ̂S(t) is described
by

dχ̂S(t)

dt
= Lt [χ̂S(t)]

Lt is a linear functional of x̂, p̂ e χ̂S(t), independent from λ e µ

Therefore by linearity we obtain the adjoint master equation

dÔS(t)

dt
=

∫
dλdµ O(λ, µ)Lt[χ̂S(t)] = Lt

[
ÔS(t)

]
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Quantum Brownian Motion Reconsidered
Heisenberg picture

Heisenberg picture

From the adjoint master equation we want to obtain the
master equation for the states:

dÔS(t)

dt
= Lt

[
ÔS(t)

]
→ dρ̂S(t)

dt
= L̃∗t [ρ̂S(t)]

We were able to obtain explicitly the form of L̃t directly from

L̃t = Φt
−1 ◦ Lt ◦ Φt
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Quantum Brownian Motion Reconsidered
Heisenberg picture

Results

Results

Our master equation is equivalent to the one of Hu, Paz and
Zhang (1992)

In weak coupling regime (analytic verification)
and beyond (numerical verification)

We provide a simpler form of the coefficients of master
equation.

For some examples we have an explicit form of the master
equation.
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Example
For the Drude-Lorentz spectral density

J(ω) =
2Mγ

π
ω

Ω2

ω2 + Ω2
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