

Fig. 3. Example of a NoN Aanabolemeter (placed at the center of the Image) integrated with a logperiodic spiral antenna [14]. An improved detection scheme for axion-like particles

L. Capparelli, G. Cavoto, J. Ferretti, A. Polosa University and INFN Roma

F. Giazotto NEST/CNR Pisa, P.S.

OUTLINE

• Axions Search: motivation and theory

How to detect Axions

• STAX

Detector R&D

Axion to photon conversion

- \bigcirc Light pseudo scalar J^P = 0⁻ can solve both the dark matter problem and the CP symmetry puzzle in QCD
- $\square m_a < 3x10^{-3} \text{ eV} \text{ from SN1987}$
- axion, like neutral pion couples to two photons via fermion loop (Primakoff effect)

Axion in magnetic field

Axion-B field interaction can be treat quasi-classically as an interaction of a photon with an external field with a photon-axion transition

Axien-Like particles $\mathcal{L}_{r} = \frac{1}{M} a \mathcal{F}_{r} \widetilde{\mathcal{F}}^{\nu \nu}$ $\widehat{\mathsf{F}}^{\mu\nu} = \frac{1}{2} \in \mathcal{I}^{\mu\nu} \mathcal{I}^{\sigma} \mathcal{F}_{\mathcal{I}}^{\sigma}$ $\alpha = \frac{1}{M} \vec{H}^{ent} \cdot \frac{\partial}{\partial t} \vec{A} - m^2 \alpha$ Gr. foison ey, in electricity; $\mathcal{A}\phi + k^2 \phi = -4\pi \rho$ $\phi = \int \beta(\vec{r}', t - \frac{R}{c}) \frac{e^{i\kappa R}}{R} dV'$ Q心た-た.か $\vec{k}' = k \vec{k}'$ R >> R'

2/9

3/30/15

Axions

Photon - Arion Conversion 3/30/15 mostable in H a=ferke $\left|\mathcal{M}_{\substack{\boldsymbol{Y}\neq\boldsymbol{\alpha}}}\right|^{2} = \frac{1}{4M^{2}}\left|\left(\sum_{e}^{i\vec{q}\cdot\vec{n}}\vec{H}(\vec{n})\cdot\vec{\epsilon}(\vec{k}_{\boldsymbol{Y}},\boldsymbol{\chi})d\boldsymbol{V}\right|^{2}\right|$ Max uben $\vec{k}_{\gamma} \perp \vec{H}$ Formula holds for $\vec{E}_{\gamma} = \vec{E}_{\alpha}$ Notice $|\vec{k}_{\gamma}| \neq |\vec{k}_{\alpha}|$ and $\vec{q} = \vec{k}_{\gamma} - \vec{k}_{\alpha}$

Axions

Conversion Probability

Tu the I plane Hextends over long dist. wrt 1/94 & 1/97 - In the 11 direction we amme Lx 5 1/9x.

 $P_{\mathcal{S},\mathbb{Z},a} = \frac{H^2}{M^2} \xrightarrow{\operatorname{Jim}^2\left(\frac{q_* L_*}{2}\right)} \left(\frac{E_Y}{W_{al}}\right)$

 $g_x = \frac{m_a^2}{2E_r}$

 $|\vec{k}_a| = \vec{E}_a^2 - m_a^2 = \vec{E}_f^2 - m_a^2 \sim \vec{E}_f as \vec{E}_f \gg m_a$

3/30/15

Axion-Photon conversion probability

$$P_{\gamma \leftrightarrows a} = g^2 H^2 \frac{\sin^2\left(\frac{q_x L_x}{2}\right)}{q_x^2}$$

with the transfered momentum

$$q_x = \frac{m_a^2}{2\mathcal{E}_\gamma}$$

g is the axion-gamma coupling constant $< 10^{-10}$ GeV⁻¹ from astrophysics

2 key points: very high H field very intense source

Axions Experiments

- Three types: Haloscopic, Helioscopic, LSW
- Halo often use cavities: High sensitivity but limited mass window

Only experiments hitting Peccei-Quin region

Ex: ADMX Livermore

Axions Experiments

- Three types: Haloscopic, Helioscopic, LSW
- First two suffer by low intensity source or depends on stellar/galactic models

Ex: CAST and IAXO (CERN) use LHC dipoles

LSW: Light Shining through the Wall

Laser Source Higher Luminosity

 $N_a \sim 6 x 10^{16} / s$

 $\dot{N} \propto \dot{N}_{\text{source}} \times P_{\gamma \to a} P_{a \to \gamma} \simeq \dot{N}_{\text{source}} \times g^4 H^4 L_x^4$

LSW: Light Shining through the Wall

Ex: ALPs Desy use the Hera dipoles N~ 10¹⁹ photons/s

STAX: keypoints

- Given a series of a s
- \bigcirc Very intense photon source gyrotrons up to 1 MW @ 30 GHz —> 10²⁸ photons/s
- Series Serie

STAX: gyrotrons

30-100 GHz is the optimal point

STAX: gyrotrons

30-100 GHz maximum laser power

STAX: gyrotrons

The operating region of gyrotrons

Fig. 2 Typical high power gyrotrons a JAERI/TOSHIBA 0.82 MW, 170 GHz, b GYCOM 1 MW, 170 GHz, c CPI 0.9 MW, 140 GHz, d TED 0.9 MW, 140 GHz

(c)

(d)

(b)

(a)

Exclusion Plot

Exclusion PlotAxion–Like Particle. STAX: Time 10^8 s, H = 15 T, Lx = 0.5 m Q = 10^4 , Ey = 118 μ eV, \dot{N} = 10^{27} y/s, P = 100 kW

Some Numbers

(VERY) PRELIMINARY

ALPS	STAX	galps / gstax
0.8 W	100 kW	18.8
2.327 eV	118 µeV	11.8
55.0	10 ⁴	3.7
22 T m	7.5 T m	0.3
0.9	1.0	1.0
1.8 10 ⁻³ sec ⁻¹	10 ⁻⁹ sec ⁻¹	34.0
		~ 104
	ALPS 0.8 W 2.327 eV 55.0 22 T m 0.9 1.8 10 ⁻³ sec ⁻¹	ALPS STAX 0.8 W 100 kW 2.327 eV 118 µeV 55.0 10 ⁴ 22 T m 7.5 T m 0.9 1.0 1.8 10 ⁻³ sec ⁻¹ 10 ⁻⁹ sec ⁻¹

STAX: detector

Sub THz Single Photon Detector REQUIREMENTS

- \bigcirc efficiency ~ 1
- Segligible background / dark count
- **....**

OUTCOME of these requirements: TES (Transition Edge Sensor)

TES detectors

Selectronic bolometer made by a low critical temperature superconductor

Sub -THz TES for STAX

R&D goal: implement TES sensors in the working region between 30-100 GHz through 4 drivers

 \odot material: choice of a Superconductor with low critical T (< 20 mK) to have a good energy resolution (~T^{3/2})

Sealfa-W, bilayer Ti-Au or Ti-Cu

 $(10^{-3}-10^{-4}\,\mu\text{m}^3)$

Sew antenna planar design to enhance the efficiency

low-noise SQUID readout electronics optimization (operating at 100 mK)

Dark count and other bkg sources

 $N_{d} = \frac{\beta_{\text{eff}}}{\sqrt{2\pi}} \int_{E_{T}/\delta E}^{\infty} \exp(-x^{2}/2) dx$ $\text{ Or and rate (phonon noise)} \sim 6x10^{-13} \text{ s}^{-1}$

$$N_d = \frac{\beta_{\text{eff}}}{\sqrt{2\pi}} \int_{E_T/\delta E}^{\infty} \exp(-x^2/2) \, dx$$

 $\beta_{eff} = 1/\tau_{eff}$ is the effective detection bandwidth, and E_T is the discrimination threshold energy.

- Black Body: at 10mK peaked around 0.6 GHz with a negligible rate of 10 ⁻³⁰ m⁻² s⁻¹ photons irradiate $\frac{1}{\sqrt{2\pi}} \int_{(E_T h\nu)/\delta E} \exp(-x^2/2) dx$
- © Cosmic bkg: $1 \text{mu}/\text{cm}^{-2}/\text{min}$ with 10 eV released in 10 hm of material saturates the TES, bkg. under control translated in a reguligible dead time of the TES ~ 0.1%
- Section Environmental radioactivity: negligible with similar estimates

Dark count negligible at these sub THz frequencies

3 years R&D project

Facilities located between INFN-Pisa and NEST-Pisa possibility to use INFN S.Piero Labs

Financial Plan and Requests

Description	Quantity	Unit	Price	Cc	st
cryogen-free dilution refrigerator	1	€	200.000	€	200.000
SQUID amplifiers	2	€	20.000	€	40.000
mw Gunn oscillator radiation sources	3	€	30.000	€	90.000
vector network analyser	1	€	100.000	€	100.000
mw NbTi superconducting coaxial cables	6	€	2.000	€	12.000
10 Tb disk storage	1	€	3.000	€	3.000
CPU (HS06 units)	500	€	12	€	6.000
Consumables per year	3	€	15.000	€	45.000
travel cost per year	3	€	15.000	€	45.000
publication cost per year	3	€	4.000	€	12.000
personnel per year	6	€	30.000	€	180.000
Total				€	733.000

Financial Plan and Requests

Description	2016		2017		2018		Total	
cryogen-free dilution refrigerator	€	200.000					€	200.000
SQUID amplifiers			€	20.000	€	20.000	€	40.000
radiation sources			€	90.000			€	90.000
vector analyser					€	100.000	€	100.000
superconducting coaxial cables	€	12.000					€	12.000
Storage			€	3.000			€	3.000
CPU			€	6.000			€	6.000
Consumables	€	15.000	€	15.000	€	15.000	€	45.000
travel cost	€	15.000	€	15.000	€	15.000	€	45.000
publication cost			€	6.000	€	6.000	€	12.000
personnel	€	60.000	€	60.000	€	60.000	€	180.000
Total	3	802.000 €		215.000 €		216.000 €	7	733.000 €

Conclusions

- We propose an improved detection scheme for axion-like particles searches based on a Light-Shining-Through-Wall (LSW) experiment in a photon frequency domain never explored before
- The aim is that of setting the most stringent exclusion limits on axion-like particles ever reached in this kind of experiments.
- To pursue the final objective we need to undergo an intermediate phase of research and development on the basic unit of the apparatus we have in mind to build: a detector of sub-THz photons.