Nuova Proposta/CALL L3IA

Line for Laser driven Light Ion Acceleration

Leonida Antonio GIZZI INO_CNR and INFN, Pisa

Milano, Pisa, Catania, Bologna, Frascati, Napoli

Target Normal Sheath Acceleration

Laser-foil interactions creates huge currents of relativistic eletrons propagating in the solid and giving rise to intense X-ray emittion and, ultimately, ion emission from the rear surface of the foil

R.A.Snavely et al., Phys. Rev. Lett. 85, 2945 (2000)
L. Romagnani *et al.*, Phys. Rev. Lett. 95 195001 (2005).
S. Betti *et al.*, Plasma Phys. Contr. Fusion 47, 521-529 (2005).
J. Fuchs et al. Nature Physics 2, 48 (2006).
X.H.Yuan et al., New Journal of Physics 12 063018 (2010)

ULTRAINTENSE Laser: Chirped Pulse Amplification

D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses", Opt. Commun. 56, **219** (1985)

ICUIL World Map of Ultrahigh Intensity Laser Capabilities

Proton Acceleration - TNSA

INFN

Laser driven ion acceleration

- High gradient acceleration: MeV μ m-1, compared with • ~MeV m-1 provided by radio frequency (RF) based accelerators;
- Ultra-short duration at the source of the ion bunch of the ulletorder of picoseconds;
- Very small effective source size: $\approx 10 \ \mu m$; •
- highly laminarity and very low emittance; ۲
- Broad energy spectrum, low collimation •
- High charge: 10^8 - 10^9 particles •

Current effort

- New acceleration mechanisms at ultrahigh intensity
 - Radiation pressure acceleration
 - Collisionless shock acceleration
- Target engineering: surface, geometry, conductivity
- Post acceleration: selection, collimation, injection
- Dosimetry and radiobiology: fast (ps) ion source

Previous activity (CN5)

 LILIA – Laser Induced Light Ion acceleration R&D and first preliminary experiments at Flame; Completed 2013

 PlasmaMeD - Proton LAser-drive beam transport, diagnostic and Multidisciplinary Applications Ends 2015

Recent progress (PlasmaMED 2013-14)

- Dedicated experimental chamber for ion acceleration commissioned 2014 (Pisa, ILIL laser);
- Ion acceleration runs started Oct. 2014 with existing laser parameters (10 TW);
- Successful collaboration Pisa, Milano, Catania, Bologna;

ILIL@ INO-CNR(Pisa)

10 TW on target - >100 TW Upgrade in progress

L.A.Gizzi, CN5, 8.7.2015

ILIL Laser: contrast

2014-2015 activity (Pisa)

Since October 2014 a new experimental chamber "Pavone" is operational for laser-solid interaction, dedicated to:

- 1. TNSA acceleration of light ions;
- 2. Fast electron transport;
- 3. Shock generation in nanoengineered target;
- 4. X-ray generation and applications

A separate target chamber is dedicated to lasergas interaction for:

- 1. electron acceleration with self injection,
- 2. radiobiology applications
- 3. γ-ray generation (Thomson scattering and bremsstrahlung) and

Light ion acceleration

INFN

Ion acceleration experimental run

Approximately 15 one-day runs have been carried out since October which have been dedicated to:

- 1. Optimization of focusing and target control;
- 2. Identification of the interaction regime;
- 3. Thomson-parabola measurements;
- 4. Solid state detectors;
- 5. RCF and CR39 measurements

L.A.Gizzi, CN5, 8.7.2015

Target

Spectrum of reflected light

2 ω_L emission => interaction at the critical density layer 3/2 ω_L - two-plasmon decay from underdense plasma

INFN

INFN

р	1,328 MeV		
C1+	709,3 keV		
C2+	828,2 keV		
C3+	979,4 keV		
C4+	955,5 keV		

р	1,612 MeV		
d	155,3 keV		
C1+	1,145 MeV		
C2+	933,2 keV		
C3+	1,499 MeV		
C4+	1,115 MeV		

CD2 + Al

р	1,017 MeV		
C1+	450,1 keV		
C2+	407,7 keV		
C3+	316,8 keV		

CH2

р	1,096 MeV		
C1+	407,6 keV		
C2+	573,4 keV		

CH2

р	1,306 MeV		
C1+	557,8 keV		
C2+	834,7 keV		
C3+	1,098 MeV		

CH2 + AI

68

L.A.Gizzi, CN5, 8.7.2015

INFN

р	1,096 MeV		
C1+	652 <i>,</i> 8 keV		
C2+	652,8 keV		
C3+	719,6 keV		
C4+	694,5 keV		

CH2 + AI

р	1,351 MeV		
d	156,7 keV		
C1+	407,6 keV		
C2+	334 <i>,</i> 0 keV		
C3+	416,6 keV		

CD2 + AI

INFN

L.A.Gizzi, CN5, 8.7.2015

Preliminary conclusions

- Preliminary conclusions:
 - Process reproducible and controllable
 - Multiple diagnostics tested (TP, Diamond, RCF ...)
 - Standard targets fully explored
 - New results on surface vs. volume acceleration
 - Target engineering still to be explored
 - Scaling with laser intensity confirmed

Proposed activity

A laser-accelerated beamline for light ions:

- Develop ion acceleration with ultraintense lasers;
- New target techniques for control of energy spectrum and beam collimation;
- Establish a proton beam line for detector development;
- Provide a dedicated test beamline for ELI (e.g. ELImed@LNS)
- A platform for radiobiology studies with laser accelerated ions

Laser upgrade

ILIL(Pisa) - MAIN LASER BEAM PARAM	Current (dec.2015)	1° phase (6- 2016)	Final
Wavelength (nm)	800	800	800
Pump Energy (J)	1.8	6(12)	24
Pulse duration(fs)	40	30	25
Energy before compression (J)	0.6	2(4)	7
Energy after compression (J)	0.4	1.5(3)	5
Rep rate (Hz)	10	1	1
Max Intensity on target	2E19	7.5E19(1.2E20)	4E20
Contrast (ns)	>1E9	>1E9	>1E10
Expected proton beam energy (MeV)	2	6(8)	12

Current upgrade will be developed in phases: 1° phase (mid 2016) will deliver a minimum of 1.5 J on target, >4x current energy. Ion energy scaling sets max ion energy around 5 MeV

Final goal is 12 MeV, to be achieved with 5 J of energy on target.

L.A.Gizzi, CN5, 8.7.2015

LASER UPGRADE TO 200 TW AND NEW, SHIELDED TARGET AREA

-.A.Gizzi, CN5, 8

ILIL-PW – Layout

UNITS

Milano: detectors development – dedicated TP, Beam manipulation and post acceleration;

Pisa: laser, laser-plasma acceleration, laser and plasma diagnostics and control

Bologna: Theory: particle in cell modelling, beam dynamics modeling

Catania: beam characterization, dosimetry, medical applications;

Frascati: detectors and post acceleration

Napoli: radiobiology and medical applications, analitical laser-plasma modelling

