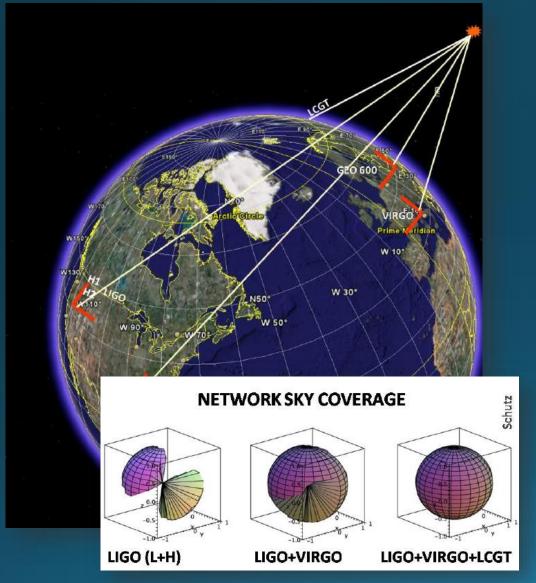


Virgo Advanced Preventivi 2015 – Virgo Pisa

Virgo Advanced

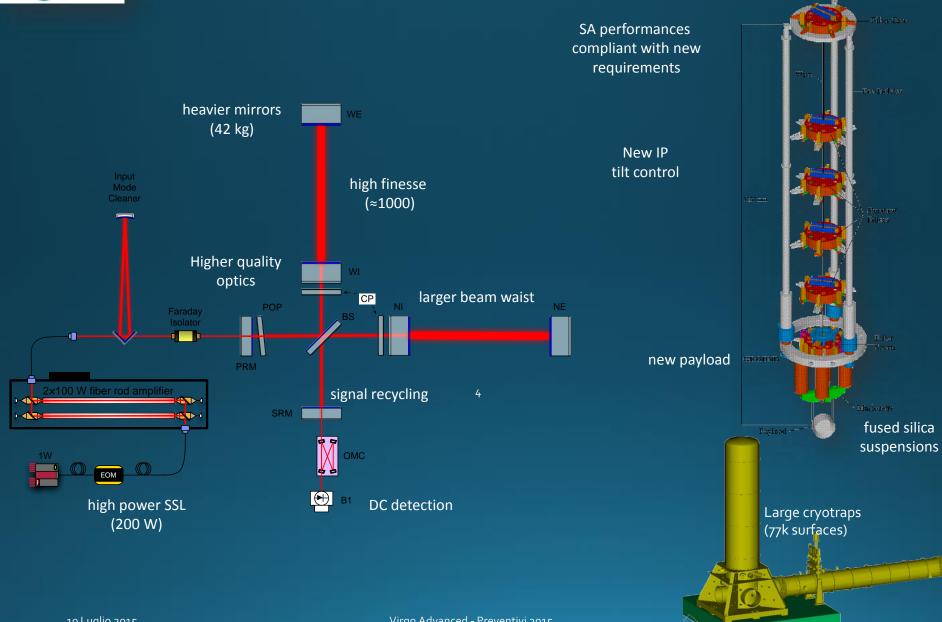
Fisici e Ingengneri	78	5	57	2	10	152
Consulenti	22	4	24	3	2	55
Ph. D.	19	2	10	3	6	40

Virgo è un rivelatore interferometrico di onde gravitazionali costruito da 11 laboratori *CNRS e INFN*, con un investimento di ~ 150 M€. Ha iniziato le sue operazioni nel 2003. La collaborazione Virgo sta crescendo: attualmente è composta di ~ 250 fisici e ingegneri provenienti da *Francia, Italia, Ungheria, Olanda, Polonia*.

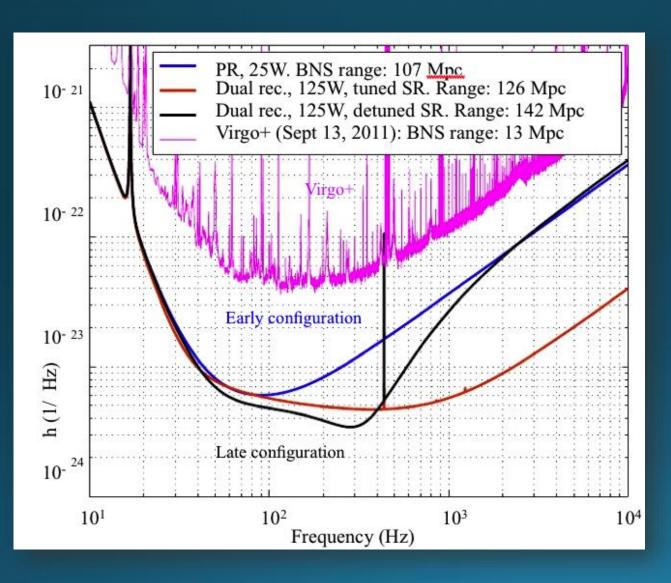

Virgo ha operato fino al 2011, quando è iniziato il de -commissioning del rivelatore e la costruzione di Advanced Virgo

Virgo è ospitato da EGO, un consorzio creato nel 2000 che ha iniziato a operare nel 2002. Gli scopi:

- Assicurare la manutenzione del sito e delle infrastrutture;
- Favorire altre ricerche nel campo della gravitazione di comune interesse per i membri;
- Promuovere la cooperazione nel campo della ricerca sperimentale sulle onde gravitazionali in europa;
- Promuovere R&D utile per la rivelazione delle onde gravitazionali.
- Il personale di EGO è composto da circa ~ 50 membri: fisici, ingegneri, tecnici e personale amministrativo.


Un network di rivelatori

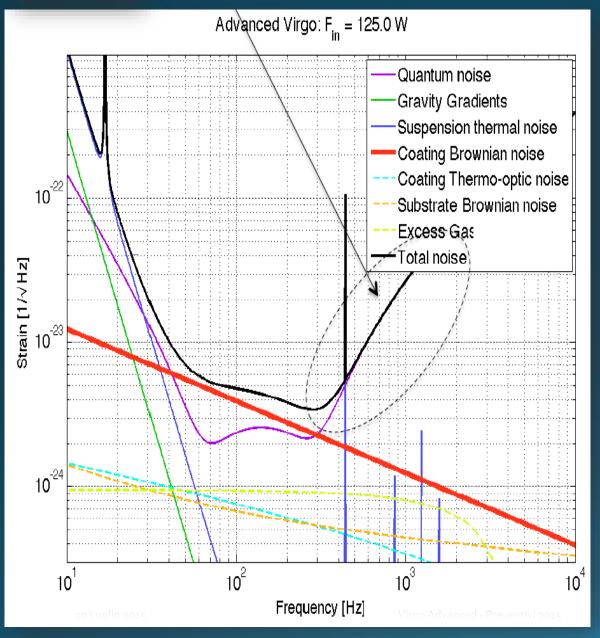
- Ricostruzione evento
 - Localizzazione sorgente
 - Determinazione polarizzazione
- Aumento della probabilità di rivelazione, a fissata probabilità di falso allarme
- Aumento del duty cycle
- Migliore sky coverage
 MoU Virgo/LSC:
 completa condivisione
 dei dati e politica
 comune di pubblicazione



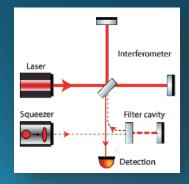
Virgo Advanced in breve

Miglioramenti successivi

Configurazione iniziale simile a Virgo+


- Senza signal recycling (locking più semplice)
- Laser di Virgo+
 (fino a 6oW:
 riduzione dei
 problemi termici)

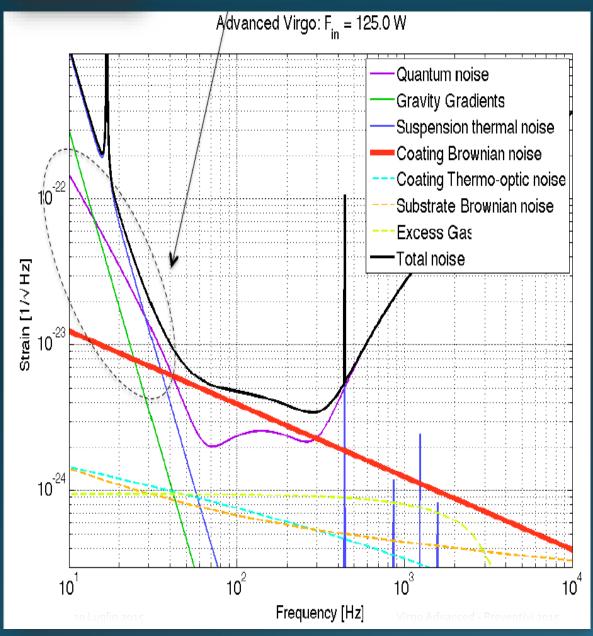
Obiettivi:


- BNS inspiral range > 100Mpc
- Analisi congiunta LSC/Virgo inizio autunno 2016

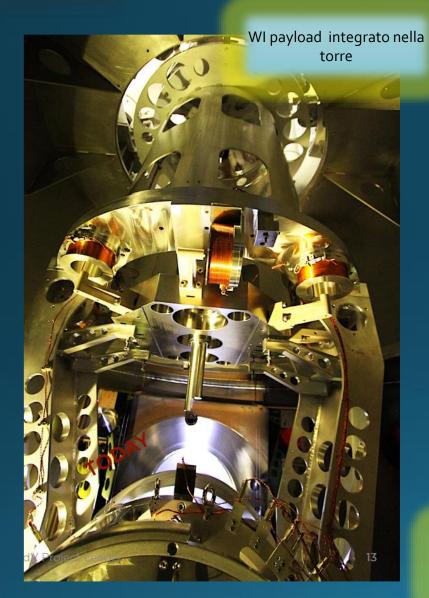
Le sfide: alte frequenze

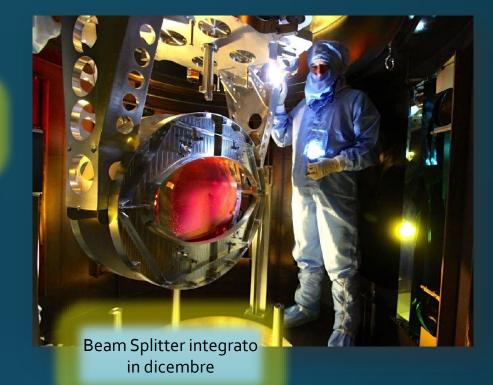


- Laser alta potenza (2017-2018)
 - Aberrazioni termiche (miglioramento TCS)
 - Instabilità parametriche
- Standard squeezing (2017-2018)
 - Riduce rumore ad alta frequenza (shot noise)...
 - ... senza aumenta rumore a bassa frequenza (pressione di radiazione)
- Squeezing dipendente dalla frequenza
 - Necessaria una cavità di filtraggio
 - Possibile


Le sfide: frequenze intermedie

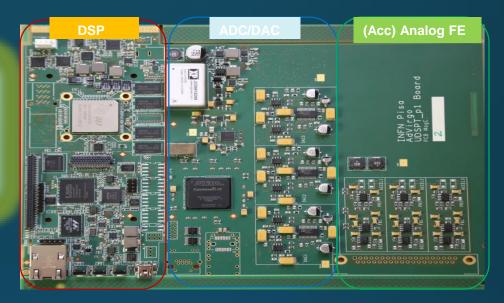
- Rumore dominante: termico legato al coating
 - La dissipazione è dominata dal coating
 - Drogaggio con Ta₂O₅ with Ti ha permesso miglioramenti
- Advanced Virgo avrà fasci larghi
 - Diametro BS maggiore
 - Strutture vuoto più grandi
 - Necessario un coating uniforme su grandi aree
- Modi ottici quasi degeneri: aberrazioni ottiche tollerabili ridotte
 - Miglioramenti della qualità dell'ottica
 - Controllo attivo delle aberrazioni


Le sfide: basse frequenze



- Ottimizzazione della struttura della sospensione
 - Ridotto rumore termico
- Ottimizzazione della strategia di controllo: MIMO Optimal Control, Gyroscopes (2017-2018)
- Sottrazione del rumore Newtoniano

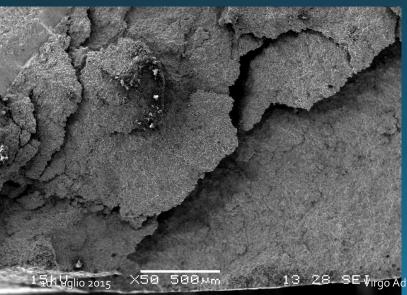
Status



Status

Elettronica di controllo completamente ridisegnata.

Costruite 140 schede (130 necessarie). Test in fase di completamento (80/140) Grosso impegno sul SW


Nuove strutture vuoto installate. Criotrappole posizionate su NI/WI Banchi TCS: ultimati, prossimi alla completa integrazione

Un recente imprevisto

- Alcune lame rotte sono state scoperte su alcuni superattenuatori
- Quasi sicuramete la rottura è dovuta a infragilimento dovuto a contaminazione di idrogeno (Hydrogen Embrittlement) dell'acciaio ad alta resistenza utilizzato (Maraging)
- Le cause sono attualmente in studio
- Sono stati definiti dei criteri per la identificazione di lame non rotte ma rischiose. L'esame e la sostituzione delle lame rotte o rischiose è in corso.
- Stiamo cercando di reperire manpower addizionale per ridurre l'impatto di questo evento sullo scheduling

Analisi dati: background stocastico

Ricerca di onde gravitazionali che possono essere modellate solo come processo stocastico.

<u>Necessario utilizzare</u> <u>contemporaneamente più rivelatori</u> <u>(correlazione).</u>

Fondi cosmologici

- Limiti superiori per modelli di evoluzione dell'universo
- Rivelazione, studio di anisotropie
 - Già ottenuti limiti superiori: vedere LSC/VIRGO collaboration. An upper limit on the stochastic gravitational-wave background of cosmological origin.
 Nature 460, 990-994 (20 August 2009)
- Prospettive interessanti con i rivelatori advanced

Fondi astrofisici

 Informazioni sulla storia della formazione stellare

Attività a Pisa:

- Analisi dei dati S6/VSR2
 LSC/VIRGO collaboration. Improved Upper Limits on the Stochastic Gravitational-Wave Background from 2009-2010 LIGO and Virgo Data. Phys. Rev. Lett 113 (2014) 231101
- Vincoli su teorie estese della gravitazione
 - Tesi magistrale quasi terminata (F. Di Renzo)
 - Articolo in preparazione (LSC/VIRGO collaboration)
- Studio di fondi stocastici generati da network di stringhe cosmiche
 - Tesi magistrale quasi terminata (M. Paduano).

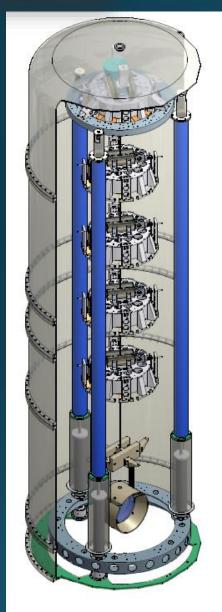
Analisi dati: *multimessenger* e sorgenti continue

Ricerca di segnali monocromatici

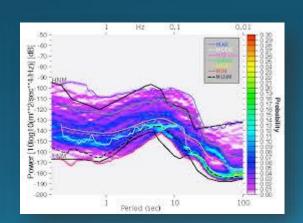
Non sono veramente monocromatici

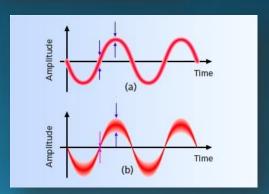
- Doppler shift indotto dal moto del rivelatore
- Spin down
- Modulazione di ampiezza

Strategie di rivelazione:


- Blind search (computazionalmente pesante)
- Semi-targeted search (posizione nota, frequenza incognita)
- Targeted search (posizione e frequenza nota)
- Segnale più debole rispetto a una coalescenza binaria, ma può essere integrato

Gruppo di pisa:


- Applicazione di tecniche di demodulazione messe a punto nel gruppo
- Semitargeted search di RX Jo852.0-4622 supernova remnant (I. Ferrante, M. Razzano, G. Cella, B. Patricelli, L. Aita)
- Con Fermi-LAT: unveiling the physics of compact objects with joint observations of GW and electromagnetic radiation (FIRB 2012).
 - FIRB project (M. Razzano)
 - Due postdoc, uno (B. Patricelli) dedicato specificamente alle attività di Virgo
- Studio di rivelazione congiunta Virgo/Fermi di segnali da GRB (M. Razzano, B. Patricelli, G. Cella, I. Ferrante, A. Stamerra, E. Mian)


Attività di R/D e supporto a Pisa

- SAFE: sospensione per luce squeezed
 - Il banco sospeso è pensato come piattaforma per un piccolo interferometro, utile per R/D su luce squeezed;
- Attività su luce squeezed
- Attività su Hydrogen Embrittlement (di interesse per tutta la comunità Virgo/LSC, Pisa capofila)
- Rumore Newtoniano: stima e studio della sottrazione con tecniche FEM
- Analisi dati con GPU e DSP
- Criogenia

Supporto da Pisa

Richieste 2015-16:

Meccanica:

A. Basti (80%)

Specialmente nel primo semestre per eventuali emergenze/ritardi nella costruzione. In seguito per upgrade, supporto attività in sezione e R/D.

• Alte tecnologie:

G. Balestri (80%) + tecnico (meccanica) Come sopra.

• Elettronica:

C. Magazzù (100%)

Composizione gruppo

Virgo	FTE	1	2	3	4	5	6	7	8	9	10	11
Allocca Annalisa	100%						*		*			
Basti Andrea	80%	*										
Balestri Gabriele	80%	*										
Boschi Valerio	100%		*					*	*			
Bradaschia Carlo	40%			*	*							
Cella Giancarlo	100%					*	*	*				*
Cerretani Giovanni	100%		*									
Di Lieto Alberto	20%						*					
Di Virgilio Angela	20%							*				
Ferrante Isidoro	70%					*		*				
Fidecaro Francesco	100%					*		*	*			
Frasconi Franco	100%	*		*						*	*	
Gennai Alberto	100%		*									
Giazotto Adalberto	40′%									*		*
Gonzales Castro Jose	100%						*	*				
Magazzù Carlo	100%		*									
Passaquieti Roberto	100%	*										
Passuello Diego	100%		*									
Patricelli Barbara	100%					*						
Poggiani Rosa	40%					*						*
Razzano Massimiliano	40%					*						
Tonelli Mauro	40%						*					

- 1. Meccanica Sospensioni
- 2. Elettronica/Controllo Sospensioni
- . Outreach
- . Vuoto
- 5. Analisi dati
- 6. R/D ottica
- 7. Analisi rumore
- 8. Controllo e sensibilità interferometro
- 9. R/D Sospensioni
- 10. Criogenia
- 11. R/D rivelatori

Richieste finanziarie (preliminari)

 Missioni: 110 kEuro (2015: 59+28 kEuro);

Consumi: 15 kEuro (2015: 11 kEuro)

3 kEuro manutenzione laboratorio elettronica

5 kEuro manutenzione laboratori SAFE & sospensioni

5 kEuro manutenzione laboratorio criogenia

2 kEuro contributo materiale camera pulita

Inventario: 2 kEuro
 (2015: -- kEuro)
 2 kEuro (HW analisi dati)

Richieste finanziarie (preliminari)

- Costruzione apparati: 21 kEuro (2015: 15 kEuro)
 - Attività su SAFE
- Licenze SW: 1.5 kEuro(2015: 1.5 kEuro)
 - contributo licenze software di Sezione
- •TOTALE: 149.5 kEuro (2015: 86.5+28 kEuro su 146.5 kEuro richiesti)