

Activities at the Calliope facility at ENEA - Casaccia

S. Baccaro, <u>A. Cemmi</u>, S. Fiore

ITALIAN NATIONAL AGENCY FOR NEW TECHNOLOGIES, ENERGY AND SUSTAINABLE ECONOMIC DEVELOPMENT Department for Fusion and Nuclear Safety Technology **Casaccia Research Centre** (Rome, Italy)

Outline

calliope facility irradiation plant laboratory

Qualification test Nuclear and space applications

> Experimental researches Chemical, physical and biological effects

Alessia Cemmi

<u>Maximum allowed activity</u>: 3.7x10¹⁵ Bq (100kCi) <u>Maximum dose rate along the rack longitudinal axis</u>

Pool-type irradiation facility equipped with a ⁶⁰Co γ source in a high volume

 $(7 \times 6 \times 3.9 \text{ m}^3)$ shielded cell.

Alessia Cemmi

⁶⁰Co Calliope irradiation plant - 2

Interaction of gamma rays with matter

Alessia Cemmi

A dedicated software is set up for different purposes :

- > source information (dimension, geometry, activity)
 - dosimetry (dosimetric experimental measurements, dose rate values and related irradiation positions)
 - source rack position monitoring (optical sensor array, local interface) to check the exact position of the source rack at any time

Calliope irradiation process monitoring system - 2

Screen shot of the source rack monitoring system

samples management and dose certification (scheduling and reporting software for the planning of the irradiation tests; interfaced with the source rack position monitoring system to allow the filling of the irradiation certificates)

AGENZIA NAZIONALI

PER LE NUOVE TECNOLOGIE, L'ENERGIA

Simulation of γ radiation field inside the cell - 1 To map the γ radiation field inside the irradiation cell, a simulation of Calliope dose rate profile has been performed by using FLUKA code. FLUKA Simulation of the source rack View of the 48⁶⁰Co rods in the rack. Surrounding media is air and of the irradiation cell Calliope Dose rate horizontal section (Apr 15) **Colors** are proportional to dose rate. y (cm) Usable area for irradiation now is up to 1.7 kGy/h window side X **Top view** x (cm) Top view x-y of the dose rate Symmetrical dose rate distribution in profile in the overall irradiation cell the middle of the rack

Alessia Cemmi

RAIN15 - LNF Frascati - October 12-13 2015

Simulation of γ radiation field inside the cell - 2

Investigation of gamma irradiation effects on chemical and physical properties of different materials

Activities at Calliope PER LE NUOVE TECNOLO **Radiation** effects Physical and chemical analyses Processing Exposition to radiation of of materials or components materials or components during their life time Polymerization Reliability * Sterilisation ✤ Life time prevision Food identification Radiation resistance 60Co PLANT LABORATORY

Activities at Calliope: nuclear qualification - 1

RADIATION DAMAGE OF MATRICES FOR NUCLEAR WASTE

Alessia Cemmi

Activities at Calliope: nuclear qualification - 2

ITER – International Thermonuclear Experimental Reactor

Ceramic advanced materials Si_i|Si^C ciC_i|Si^C

IVVS actuating components (dose = 4MGy)

Alessia Cemmi

Activities at Calliope: electronic devices qualification - 1

The radiation damage induced on silicon based devices is widely investigated

astrophysics experiments (spacecraft, satellite)

Alessia Cemmi

Activities at Calliope: electronic devices qualification - 2

Space application

Source of radiation:

- Van Allen belts
- Solar wind
- High Energy solar protons
- Galactic radiation
- Bremsstrahlung radiation

radiation effects on electronic components:

★ damage mechanisms (surface/bulk)
★ dose rate effects
★ T influence on damage mechanisms

ionization & displacement damage

Alessia Cemmi

Activities at Calliope: electronic devices qualification - 3

Irradiation tests on electronic devices

MIL and ESA STANDARDS PROTOCOLS

MIL-STD-883E

0.5< dose rate <3 Gy (Si)/s ± 10%

ESA/SCC BASIC SPECIFICATION No. 22900

Two dose rate windows: 1) The standard dose rate 36-360 Gy/h 2) The low dose rate 0.36-3.6 Gy/h

- Time interval between expositions should be < 2 hours.

- Accelerated ageing under bias: 100°C under bias for 168h

LHC-E

Activities at Calliope: experimental researches - 1

 radiation hardness of radiation detectors, optical components and scintillators (optical fibers, crystals, glasses) for High Energy Physics experiments

Scintillating crystals

The Large Hadron Collider (LHC)

ATLAS

SPS

From LEP to LHC

nagnets

Compact Muon Solenoid

CMS

CMS ECAL experiment at LHC CERN

Crystals qualification and R & D

 γ induced colour centres can absorb photons emitted by luminescent centres.

Optical transmission decrease Loss of scintillation light output

PbWO₄ crystals

(composition/radiation hardness)

Activities at Calliope: experimental researches - 2

Scintillating crystals

Belle II experiment at SuperKEKB (Japan)

Optical characterization under irradiation and light yield measurements

Activities at Calliope: experimental researches - 3

Glasses

Scintillating glassy matrices (different energy range) radiation hardness, doping ions

Doped silicate and phosphate glasses

Luminescence and optical properties (solid-state lasers, fiber amplifiers, W-LEDs) gamma rays composition modification

Doped borosilicate glasses

Dosimetric systems

(industrial application) optical properties correlated to the absorbed dose

Ag-doped ChGs

Optical data memory (photo-induced phenomena) glass properties modulation under gamma irr. WO₃-based glasses Alessia Cemmi BAIN15 - LNE Frascati - October 12-13 2015

Alessia Cemmi

✓ biological researches for the conservation and preservation of cultural heritage archived materials (books, images): bio-deteriogen eradication assisted by gamma radiation

 ✓ agricoltural and environmental activities (biological control of pests by SIT, Steril Insect Technique; agricoltural product treatements)

Ryncophorus ferrugineus (pest for palm tree)

Irradiation of orange fruits infested by *Ceratidis capitata*

Alessia Cemmi

THANK YOU FOR YOUR ATTENTION

alessia.cemmi@enea.it