Time-dependent charge asymmetry in $D^0 \rightarrow hh (A_{\Gamma})$

P. Marino^{1,3}, M. J. Morello^{1,3}, G. Punzi^{2,3}

¹SNS, ²University of Pisa, ³INFN-Pisa

нсh Italia 13 Ottobre 2015

Introduction

SNS & INFN-Pi

Binned method

Binned method:

- Divide the sample into bins of lifetime;
- In each bin of lifetime: measure the number of signal events performing a simultaneous likelihood fit of Δm between D^0 and \overline{D}^0 , where A_{raw} is a shared parameter
- measure A_{raw} in bins of D^0 proper decay time, fitting Δm simultaneously for D^0 and \overline{D}^0 ;
- extract A_{Γ} from a linear fit of $A_{raw}(t)$.
- Acceptance functions cancel out in the ratio.

$$A_{\rm raw}(t) = \frac{N(D^0; t_i) - N(\overline{D}^0; t_i)}{N(D^0; t_i) + N(\overline{D}^0; t_i)} = A_0 - A_{\Gamma} \frac{t}{\tau}$$

Time-independent of the production, dependent of the production of the p

SNS & INFN-Pi

ndent term: etector, etc.. offset.

dent term

Stripping

Stripping 21(21r1):

$\label{eq:charmonic} \begin{array}{l} \mathsf{CHARMTOBESWUM}_D\mathsf{ST},\\ \mathsf{D2hhPromptDst2DxxLine}\\ (xx=\mathsf{RS},\,\mathsf{KK},\,\mathsf{PiPi}) \end{array}$

			size
year/Mag	# files	# events	(TB)
2012/Up	7624	223 109 736	22
2012/Down	8173	227 656 810	22.6
2011/Down	4911	92 663 911	8
2011/Up	3989	62 595 702	5.4

Quantity	Requirements	Units
$p_{\mathrm{T}}~(\pi)$	> 800	MeV/c
$p(\pi)$	> 5	${ m GeV}/c$
Track fit $\chi^2/\text{ndf}(\pi)$	< 3	-
Impact parameter $\chi^2(\pi)$	> 9	-
$\Delta \log \mathcal{L}_{\pi-K}(\pi)$	< 0	-
$p_{\mathrm{T}} (K)$	> 800	MeV/c
p(K)	> 5	${ m GeV}/c$
Track fit $\chi^2/\text{ndf}(K)$	< 3	-
Impact parameter χ^2 (K)	> 9	-
$\Delta \log \mathcal{L}_{\pi-K}(K)$	> 5	-
$p_{ m T} \left(D^0 ight)$	> 2	GeV/c
$p(D^0)$	> 5	GeV/c
Decay vertex χ^2 distance from PV	> 40	-
Cosine of D^0 pointing angle (a.k.a. DIRA)	> 0.9999	-
Distance of closest approach of D^0 daughters (a.k.a. DOCA)	< 0.07	$\mathbf{m}\mathbf{m}$
$p_{\rm T}$ of at least one of D^0 daughters	> 1.5	GeV/c
Fit vertex $\chi^2(D^0)/\mathrm{ndf}$	< 10	-
m(hh')	[1765, 2065]	MeV/c^2
Fit vertex $\chi^2(D^*)/\mathrm{ndf}$	< 100	-
$m(hh'\pi_s)-m(hh')$	< 160	MeV/c^2
Track fit $\chi^2/\text{ndf}(\pi_s)$	< 5	-

StrippingD2hhPromptDst2D2RSLine
 StrippingD2hhPromptDst2D2KKLine

StrippingD2hhPromptDst2D2RREIRC

P. Marino

SNS & INFN-Pi

Trigger and Offline selection

Candidates have to be TOS on:

Hlt1TrackAllL0

+ Hlt2CharmHadD02HH_D02xx || Hlt2CharmHadD02HH_D02xxWideMass || Hlt2CharmHadD02xx || Hlt2CharmHadD02xxWideMass

	Base S	election				
	Quantity	Requirements	Units			
	$\Delta \log \mathcal{L}_{\pi-K}(K)$	> 5	-			411 84379714181
	$\Delta \log \mathcal{L}_{\pi-K}(\pi)$	< -5	-		800407.940100000000000000000000000000000000000	
	R_{xy}	< 4			number of	eve
	$R_{xy} = \sqrt{(DV_x - R_y)^2}$	$(DV_x)^2 + (DV_y - PV_y)^2$	$\overline{)^2}$	-	Sample	7
	v			-	2011 Up	
					2011 Down	
					2012 Up	
					2012 Down	
	1		I			
LHC THC	P. Marino	SN	NS & INFN-F	oj	13/10/1	5

No L0 requirement

ents after S+T+O

Cross checks on $D^{\cup} \rightarrow K\pi$ (pseudo-A_r)

- Time-depend asymmetry in the $D^0 \rightarrow K\pi$ is expected much smaller than that in $D^0 \rightarrow hh$ decays.
- Entries 2200 E ✦ To speed up this first exploratory stage of the analysis we count signal events without performing a likelihood fit in bins of proper decay time:
 - backgrounds reduced tightening requirements on masses and $IP\chi 2$.

SNS & INFN-Pi

P. Marino

1600

1400

1200

1000

800

600

†	Entries	1.350242e+07	
	Mean	146	E
•	Std Dev	2.1	Ξ
	$D^0 \rightarrow K$	π (2011Up)) 月
			Ξ
			Ξ
•	Residua	Irou	
•	hal	¹ and om	Diona
•	Uack	ground of	10118
		~3y	6
<i>.</i>		L	E
1			
1	Entries	1.350242e+07	-
	Mean	146	4
	Std Dev	2.1	E
			-
	L		
			1
ł	$D^0 \rightarrow K$	π (2011Up)	
	$D^0 \rightarrow K$	π (2011Up)	
	$D^0 \rightarrow K$	π (2011Up)	
	$D^0 \rightarrow K$	π (2011Up)	
	$D^0 \rightarrow K$	π (2011Up)	
	$D^0 \rightarrow K$	π (2011Up)	
	$D^0 \rightarrow K$	π (2011Up)	
	$D^0 \rightarrow K$	π (2011Up)	
145	$D^0 \rightarrow K$	π (2011Up)	
145	$D^0 \rightarrow K$	π (2011Up)	155 2 ² 1
145	$D^0 \rightarrow K$	π (2011Up) 50 Δm [MeV/a	155 2 ²]
145	$D^0 \rightarrow K$	π (2011Up) 50 Δm [MeV/α	155 2 ²]

pseudo-A_r results

 ◆ Current experimental sensitivity not sufficient to measure a significant pseudo-A_Γ for the D⁰→Kπ different from zero. Any observed slope is a clear indication of a dangerous detector induced effects.

P. Marino

 4.6σ from zero

SNS & INFN-Pi

Time-dependent asymmetry vs. momentum-dependent charge asymmetry

Observed significant slope different from zero;

- removing regions with large asymmetries reduces the effect.
- Data seem to tell us that charge asymmetry is correlated to the the proper decay time. How is it possible?

✦ A time-dependent effect may be generated by a detector charge asymmetry if:

- momentum and proper decay time are correlated.
- charge asymmetry is momentum dependent.

P. Marino

SNS & INFN-Pi

"Correlation" momentum - proper decay time

time-dependent asymmetry

First ingredient: $p(D^0)$ -ct(D^0) correlation

Second ingredient: charge-asymmetries

Charge asymmetries are present;

+ large variations as function of p_x .

LHCb ГНСр

P. Marino

SNS & INFN-Pi

13/10/15

Momentumdependent charge asymmetry

Proving the conjecture

P. Marino

SNS & INFN-Pi

pseudo- A_{Γ} as function of $p(D^{\vee})$

const. =
$$0.44 \pm 0.29$$

 $\chi^2/\text{ndf} = 90/11$

A simple χ^2 fit indicates that this is not the case.

Large variation observed in same entries of the table:

* 2012Up: bin1 vs. bin3 \rightarrow 4.4 σ ; 2012Down: bin1 vs. bin3 \rightarrow ~7 σ ;

Symmetrisation

kinematics of positively charged pions is re-weighted to the kinematics of negatively charged pions:

* p_x is flipped to $-p_x$.

 \bullet symmetrisation performed in the 2D space: C and θ_x

Symmetrisation II

SNS & INFN-Pi

pseudo-A_r results after symmetrisation

\blacklozenge	The discrepancy from zero reduces (average	
•	from $4 (\sigma to 27\sigma)$.	sample
	110111 4.00 10 2.70);	2011 Up
+	$A_{raw}(t)$ fits well to a straight line (χ^2 is better).	2011 Down
	\mathbf{O}	

 Still discrepancies remain, in particular on 2011 MagUp sample (2.9 σ)

	base sel. (ndf=	=27)	base sel., C/θ	sym.
sample	$A_{\Gamma}[10^{-3}]$	χ^2	$A_{\Gamma}[10^{-3}]$	χ^2
2011 Up	1.71 ± 0.29	32	0.85 ± 0.29	18
2011 Down	-0.02 ± 0.24	12	0.19 ± 0.24	14
$2012 { m ~Up}$	0.78 ± 0.17	50	-0.06 ± 0.17	23
2012 Down	-0.04 ± 0.17	26	0.42 ± 0.17	28
average	0.46 ± 0.10		0.26 ± 0.10	

13/10/15

 χ^2 / ndf

cte

slope

SNS & INFN-Pi

 t/τ

Robustness of the method

 \bullet Pseudo-A_r calculated as function of the D⁰ momentum, to check if some residual momentum dependences is still there.

SNS & INFN-Pi

P. Marino

13/10/15

Robustness of the method II (fiducial cuts)

 $\star \chi^2$ /ndf of the fit to a constant moves from 90/11 (base selection) to 19/11 (base selection + fiducial cuts + symmetrisation), corresponding to an improvement of 71/11 units.

P. Marino

SNS & INFN-Pi

Conclusion

- \bullet A significant time-dependent asymmetry observed when a loose selection is required (4.6 σ from zero over all data samples).
- \bullet pseudo-A_r depends on the momentum requirements.
- A "plausible source or part of source" of this may be the combination of two effects:
 - * a momentum-dependent charge asymmetry of the soft pion
 - * an artificial detector-induced correlation between the momentum and the proper decay time of the D⁰ meson.
- + A combination of fiducial requirements plus "symmetrisation" of kinematic distributions of soft pions seems to cancel out the artificial time dependence of the asymmetry.
 - Over all data sample effect moves from 4.6 σ to 1 σ (where $1\sigma = 1.5 \times 10^{-4}$)
 - * pseudo-A_{Γ} compatible to be a constant in different periods and different momentum bins (χ 2/ndf moves from 90/11 \rightarrow 19/11)

+ $A_{\Gamma}(K\pi)$ is now compatible with zero and flat in momentum bins and different periods.

Backup Slides

Removal of soft pions acceptance-induced asymmetries

- \bullet It is well known there are kinematic regions of the soft pions with charge asymmetries up to 100% level.*
- + Large asymmetries induced by acceptance factors can be removed by excluding kinematic region of the space.
 - $|p_x(\pi_s)| \le 0.317(p_z(\pi_s) 2400);$

•
$$|p_y(\pi_s)/p_z(\pi_s)| \le 0.02$$

~ 60% of the events retained

pseudo-A_r results in soft pion fiducial regions

• Discrepancy from zero of the average reduce to 3.1σ (before 4.6σ), with also:

- ◆ 2011MagUp 3.7σ (before 5.9σ)
- ◆ 2012MagUp 2σ (before 4.5σ)
- MagDown samples remain compatible with zero (@ 1σ).

	base sel. (ndf =	= 27)	base sel.+f.c (\mathbf{x}	ndf = 27)
sample	$A_{\Gamma}[10^{-3}]$	χ^2	$A_{\Gamma}[10^{-3}]$	χ^2
2011 Up	1.71 ± 0.29	32	1.36 ± 0.37	18
2011 Down	-0.02 ± 0.24	12	0.28 ± 0.31	18
$2012 { m ~Up}$	0.78 ± 0.17	50	0.44 ± 0.22	33
2012 Down	-0.04 ± 0.17	26	0.09 ± 0.22	34
average	0.46 ± 0.10		0.40 ± 0.13	

+/	_
T/	т
U/	•

Comparison with Oxford analysis (binned $A_r 1/fb$)

		LHCb-ANA-2012-039	
sample	$A_{\Gamma} [10^{-3}]$	$A_{\Gamma} [10^{-3}] (\text{oxford})$	—
2011 MagUp before TS	1.42 ± 0.45	0.56 ± 0.49	_
2011 MagUp after TS	1.86 ± 0.37	1.11 ± 0.39	
2011 MagDown before TS	0.39 ± 0.40	1.04 ± 0.48	
2011 $MagDown$ after TS	-0.24 ± 0.30	0.49 ± 0.31	
average	0.68 ± 0.18	0.76 ± 0.19	
total	0.72 ± 0.18	-0.08 ± 0.19	1 × C

Average: weighted average.

Total: pseudo-A_{Γ} performed with the all samples in one shot.

SNS & INFN-Pi

Check of time-dependent asymmetries with selection from "D0-Mixing analysis"

pseudo-A_r results with mixing analysis selection

13/10/15

Symmetrise sample with mixing selection

$\chi^2 / { m ndf} = 17 / 11$	
-------------------------------	--

	$A_{\Gamma}[10^{-3}]$	³] base sel. $+ \min$	ing cuts
$\operatorname{sample}/[\operatorname{GeV}/c]$	$p(D^0) < 50$	$50 < p(D^0) < 100$	$p(D^0) > 100$
2011 Up	1.35 ± 0.68	-0.23 ± 0.49	2.12 ± 1.10
2011 Down	-0.03 ± 0.56	0.23 ± 0.41	0.92 ± 0.92
2012 Up	-0.19 ± 0.40	-0.32 ± 0.30	-1.15 ± 0.68
2012 Down	-0.22 ± 0.39	-0.03 ± 0.29	1.13 ± 0.66

	$A_{\Gamma}[10^{-3}]$ base	e sel. + mixing cu	ts, C/θ_x sym.
sample/[GeV/ c]	$p(D^0) < 50$	$50 < p(D^0) < 100$	$p(D^0) > 100$
2011 Up	0.90 ± 0.68	-0.16 ± 0.49	1.22 ± 1.10
2011 Down	0.15 ± 0.56	0.19 ± 0.41	1.52 ± 0.92
2012 Up	-0.59 ± 0.40	-0.14 ± 0.30	-0.50 ± 0.69
2012 Down	0.10 ± 0.39	-0.14 ± 0.29	0.93 ± 0.67

Also with the D⁰-mixing selection the symmetrisation works properly, given an improvement in the χ^2 .

LHCD

P. Marino

SNS & INFN-Pi

