Angular analysis of $B_d \rightarrow K \pi \mu \mu$ and $\Lambda_b \rightarrow p K \mu \mu$ using a moments approach

Biplab Dey

work w/

(D. Marangotto, N. Neri (Milano) & E. Bowen, N. Serra (UZH))

Biplab Dey (INFN Milano)

Moments method

October 13, 2015 1 / 20

• Lesson from P'_5 : anomalies can show up in hitherto unexpected places.

• Angular observables being interference terms have more sensitivity than rates. Good bet for NP hunting.

• Very simple idea. Re-write rate in an orthonormal basis:

$$\frac{d\Gamma}{d\Omega} = \sum_{i} f_i(\Omega) \times \Gamma_i.$$

- Orthonormal angular basis: $\int f_i(\Omega) f_j(\Omega) d\Omega = \delta_{ij}$.
- Weighting each event by $f_i(\Omega)$ projects out the $\langle \Gamma_i \rangle$'s.
- All your observables can now be *solved* out from the Γ_i .
- Completely equivalent to doing a likelihood fit, as long as you extract the covariance matrix correctly.
- Can be quite non-trivial in the presence of background, and efficiency calculations. See discussion Sec. C in 1505.02873.

- Two main thrusts here:
 - Very stable against low statistics. No fit bias, start values, etc. No enternal input – it is what it is.
 - In many/most situations with higher waves, the observables turn out to be related. Hard problem to understand what constitutes a minimal set of independent parameters to float in likelihood fit. MOM is completely impervious to this.

$B_d ightarrow K \pi \mu \mu$ and friends

• $b \to X(\to h_1 h_2) \ell_1 \ell_2$ topology: $\Phi \in \{m_X, q^2, \theta_\ell, \theta_V, \chi\}$

- Wide window in the *m_X* spectrum.
- Higher waves in the dihadron system ⇒ more observables to play around with.

- The orthonormal basis is constructed out of $Y_l^m \equiv Y_l^m(\theta_\ell, \chi)$ and $P_l^m \equiv \sqrt{2\pi} Y_l^m(\theta_V, 0)$.
- 7 complex amplitudes, $\{S, H_{0,\parallel,\perp}, D_{0,\parallel,\perp}\}$, or 13 real numbers.
- 28 Γ_i moments/observables. A few examples:

i	$f_i(\Omega)$	$\Gamma_i^{ m tr}$
1	$P_0^0 Y_0^0$	$\left[H_0 ^2 + H_{\parallel} ^2 + H_{\perp} ^2 + S ^2 + D_0 ^2 + D_{\parallel} ^2 + D_{\perp} ^2\right]$
2	$P_1^0 Y_0^0$	$2\left[\frac{2}{\sqrt{5}}Re(H_0D_0^*) + Re(SH_0^*) + \sqrt{\frac{3}{5}}Re(H_{\parallel}D_{\parallel}^* + H_{\perp}D_{\perp}^*)\right]$
5	$P_4^0 Y_0^0$	$rac{2}{7}\left[-2(D_{\parallel} ^2+ D_{\perp} ^2)+3 D_0 ^2 ight]$
28	$P_4^0 \sqrt{2} Im(Y_2^2)$	$-rac{4}{7}\sqrt{rac{3}{5}}$ lm(D_{\perp}D_{\parallel}^{*})

• Interesting things are now solvable for (no fitting):

$$|D_0|^2 = \frac{7}{9} \left(\frac{\Gamma_5}{2} - \sqrt{5}\Gamma_{10} \right)$$
$$|D_{\parallel}|^2 = \frac{7}{4} \left(\sqrt{\frac{5}{3}}\Gamma_{23} - \frac{1}{3} \left(\sqrt{5}\Gamma_{10} + \Gamma_5 \right) \right)$$
$$|D_{\perp}|^2 = \frac{7}{4} \left(-\sqrt{\frac{5}{3}}\Gamma_{23} - \frac{1}{3} \left(\sqrt{5}\Gamma_{10} + \Gamma_5 \right) \right)$$

• However, many things missing. Like, $(|H_0|^2 + |S|^2)$ always occur together. So F_S (S-wave fraction) "might" not be extractable.

Goodness of model estimation

• $d\Gamma/d\Omega = \sum_{i} f_i(\Omega)\Gamma_i$ is the model. PHSP MC weighted by this model should match data in all distributions.

- Eg.: in $B_d \rightarrow \psi(2S)K\pi$, I can look at $m(\psi(2S)\pi)$ spectrum for the Z(4430).
- As long as enough number of waves are included, the moments model extracts the maximal information content in the angular distributions.
- However, we have outgoing spinors (proton/muon) whose spins we average over.
- This results in "dilution" of information present in the angular distributions.

Moments till J = 4 being calculated.

 {q², m(Kπ)} binning and coverage being discussed.

Biplab Dey (INFN Milano)

October 13, 2015 9 / 20

Ongoing toy studies $(B_d \rightarrow K \pi \mu \mu)$

- Interesting observables (like P'₅) are often combinations of the Γ_i moments. Full covariance matrix is critical.
- Pulls on $\Gamma_{ii} \equiv (\Gamma_i + \Gamma_i)$ efficienctly validates *Cov*_{ii}.

Why is LHCb's $J/\psi K\pi$ important

- Long-standing confusion: in $D^+ \to \rho^0 \ell^- \overline{\nu}_\ell$, CLEO/BESIII/FOCUS does not mention how the charge-conjugation should be done (affects *BABAR*'s $\rho\ell\nu$). Follow $\pi^+(\pi^-)$ in $D^+(D^-)$?
- I also have a $\chi \rightarrow \pi + \chi$ flip with Belle's Z(4430) Appendix.
- Either case above would mean incorrect angular expression.
- Detailed cross-checks (also with B and \overline{B} separately) absolutely *necessary*.
- Moments formalism immediately extends to $B_s \to KK\mu\mu$ in wide m(KK) range ($f_2(1525)$ seen).

Extending the formalism to the spin- $\frac{1}{2} \Lambda_b$ case

- Mass-independent moments version of $\Lambda_b \to J/\psi p K$ (P_c^+ analysis) could be a good cross-check.
- Very poorly known Λ^* : P_c analysis quotes a good fraction of $\Lambda(1405)$, when $\Lambda(1405) \rightarrow N \cdot \overline{K}$ is not even listed in the PDG.
- Experimental hints towards double-pole structure in $\Lambda(1405)$.
- Moments can handle low statistics, so we can do fine m(pK) bins.
- In each m(pK) bin, include moments for J^P waves till $\frac{11}{2}^{\pm}$.
- "Mass-independent" approach. No lineshape assumptions.

Moments for $\Lambda_b ightarrow h_1 h_2 \mu \mu$

- Hard problem: Λ_b polarization + Rarita-Schwinger J^P spinors for Λ^* .
- Start with spin- $\frac{1}{2} \Lambda(1115)$: $\Lambda_b \to J/\psi \Lambda$.
- Four complex amplitudes, fully reconstructable from 5-D angular distribution (Lednicky). LHCb's $1/\text{fb} \Lambda_b$ polarization analysis used the integrated version.
- $\Lambda(1115) \rightarrow p\pi$ is self-analyzing, but hadronic $\Lambda^* \rightarrow pK$ are not. Might not access to full amplitudes.
- Long term plan:
 - Re-derive Lednicky's expression from Korner's formalism in $\Lambda(1115)$ case.
 - Extend to $\frac{11}{2}^{\pm} \Lambda^* \to pK$. NR dimuon gets further $\{V, A\}$ amplitudes.

Ongoing $\Lambda_b \rightarrow p K \mu \mu$ data analysis (DM, BD, NN)

- Simple counting: ΔA_{CP} , $A_{FB}^{\ell,h}$ and T-odd correlations.
- $\Lambda_b \rightarrow J/\psi p K$ as proxy w/o J/ψ mass-constrained.
- After BDT cut, purity is \sim 0.712, lower than P_c , but yield consistent.

- MC reweighted in nTracks, 2-d {p_T(Λ_b), p(Λ_b)}, p(P), p(K)}. PID re-weighting from PIDCalib.
- sWeighted $J/\psi pK$ data used to derive weights.
- Good agreement between Data and MC after re-weighting.

$\Lambda_b \rightarrow p K \mu \mu$: preliminary expected yield

- $n_{\rm sig}$ from Mott-Roberts model. $n_{\rm bkgd}$ from sideband fit.
- Optimal BDT cut: significance \sim 14. $n_{\rm sig} \sim$ 310.

 $\Lambda_{\rm h}$ mass distribution

5-d efficiency parameterization

- Both $K\pi\mu\mu$ and $pK\mu\mu$ will use 5-d efficiency $\epsilon(\phi)$, $\phi \in \{q^2, m_X, \cos\theta_V, \cos\theta_\ell, \chi\}$.
- Mature tool: $\epsilon(\phi)$ expanded in Legendre polynomials.
- Subsequent event-by-event reweighting of data by $1/\epsilon(\phi)$.

- $B_d \rightarrow J/\psi K\pi$: mass-independent moments till spin J = 4 in K^{*J} in 36 $m(K\pi)$ bins.
- Provide the full set of moments + covariance matrix in each m(Kπ) bin. By far the most comprehensive world data till m(Kπ) < 1530 MeV.</p>
- **③** $B_d → K \pi \mu \mu$: similar set of results in the higher $m(K\pi)$ region (first observation!). Exact $\{q^2, m(K\pi)\}$ bins under discussion.
- Λ → pKµµ: integrated m(pK) bin (first observation!). May be one low q² and one high q² bin: A^{ℓ,h}_{FB}.

- Both NR modes: improved *cc*-vetoing using DTF refitting.
- $K\pi\mu\mu$: include *F* and *G*-wave moments. Toys.
- $pK\mu\mu$: switch to ProbNN from DLL. Problems with proton PID. Toys.
- Calculate the full set of moments for $\Lambda_b \to p K \mu \mu$.
- ANA-Notes under development.

- $B^- \to \pi^+ \pi^- \ell^- \overline{\nu}_\ell$ in BABAR with S + P waves under the ρ .
- *Highly* statistics limited. Long-standing effor to pull out the *S*-wave (affects $|V_{ub}|$).

• Without the moments method, pulling out F_S is semi-impossible. Full moments paper in the pipeline.