Attività di analisi a Bologna

Fabio Ferrari INFN - Sezione di Bologna LHCb Italia Collaboration Meeting Frascati – 13 Ottobre 2015

Papers - Work in progress

- Search for CP violation in $\Lambda_b^0 \rightarrow pK^-$ and $\Lambda_b^0 \rightarrow p\pi^-$ decays
 - Hadronic production asymmetries (B⁰, B⁰_s, B⁺ and Λ^0_b) nearly finished
- CP violation measurement in time-integrated $D^0 \rightarrow K^+K^-$ and $D^0 \rightarrow \pi^+\pi^-$ decay rates (ΔA_{CP}) – finishing WG review
 - $A_{CP}(KK)$ and $A_{CP}(\pi\pi)$ to be started
- CP violation measurement in time-dependent
 B → hh decays to be started
- Search for rare decay $B^0 \rightarrow K^+K^- starting review$
- D⁰ production asymmetry nearly finished

Search for CP violation in $\Lambda_b^0 \rightarrow pK^- and \Lambda_b^0 \rightarrow p\pi^- decays$

Introduction

• Λ_b^0 production asymmetry is a fundamental ingredient to measure CP violation in $\Lambda_b^0 \rightarrow p\pi^-$ and $\Lambda_b^0 \rightarrow pK^-$ decays:

 $A_{CP}(\Lambda_b^0 \rightarrow p\pi^-) = A_{raw}(\Lambda_b^0 \rightarrow p\pi^-) + A_P(\Lambda_b^0) + A_D(p) + A_D(\pi)$ $A_{CP}(\Lambda_b^0 \rightarrow pK^-) = A_{raw}(\Lambda_b^0 \rightarrow pK^-) + A_P(\Lambda_b^0) + A_D(p) + A_D(K)$

• The raw asymmetries are

$$A_{raw}(\Lambda_b^0 \to p\pi^-) = -0.002 \pm 0.016 \text{ (stat.)}$$
$$A_{raw}(\Lambda_b^0 \to pK^-) = +0.018 \pm 0.013 \text{ (stat.)}$$

• Need also to measure proton detection asymmetry Since b and \overline{b} quarks are produced in pairs, measure $A_{P}(\Lambda_{b}^{0})$ using the relation:

$$A_P(\Lambda_b^0) = -\left[\frac{f_d}{f_{\Lambda_b^0}}A_P(B^0) + \frac{f_u}{f_{\Lambda_b^0}}A_P(B^+) + \frac{f_s}{f_{\Lambda_b^0}}A_P(B_s^0)\right]$$

where f_i are the hadronization fractions.

• Need to measure $A_P(B^0)$, $A_P(B_s^0)$ and $A_P(B^+)$ to obtain $A_P(\Lambda_b^0)$

This is strictly true if one includes all b mesons and baryons in the sum. We neglect B_c mesons and other baryons since their contributions are negligible

$A_{P}(B^{0})$ and $A_{P}(B_{s}^{0})$

• The following decays have been used:

- $B^0 \rightarrow J/\psi(\mu\mu)K^{*0} (3 \text{ fb}^{-1})$
- $B_s^0 \rightarrow D_s^-(KK\pi)\pi^+(3 \text{ fb}^{-1})$
- The time-dependent decay rate asymmetry is:

```
Asymmetries ≤ 1%
so we retain only
∕ first order terms
```

 $A(t) = \frac{\mathcal{R}(B(t) \to \bar{f}) - \mathcal{R}(B(t) \to f)}{\mathcal{R}(B(t) \to \bar{f}) + \mathcal{R}(B(t) \to f)} \xrightarrow{\sim} A_{CP} + A_D + A_P \frac{\cos(\Delta m_{d(s)}t)}{\cosh\left(\frac{\Delta\Gamma_{d(s)}t}{2}\right)}$ Direct CP asymmetry where B(t) stands for B⁰_(s) or $\bar{B}^0_{(s)}$ • The flavour of the meson oscillates between B⁰_(s) or $\bar{B}^0_{(s)}$ states • Measuring A(t) one can extract A_P as the **amplitude of the oscillatory term** • Untagged time-dependent analysis

Analysis strategy

- Divide the data sample in bins of p_T and y
 - Different binning schemes for the 2 decays
 - Same binning for 2011 and 2012
 - Finer binning defined in a way to be a subsample of the coarser binning
- Perform 2-D simultaneous invariant mass and decay time fits for each bin
 - Integrate A_P over a all bins to obtain the final integrated result
 - Integrate A_P over p_T or y to obtain the dependence w.r.t. the other variable

Results

• We measured $A_p(B^0)$ in the range $0 < p_T < 30$ GeV/c and 2.1 < y < 4.5 and $A_p(B_s^0)$ in the range $2 < p_T < 30$ GeV/c and 2.1 < y < 4.5:

$$\begin{split} A_{\rm P}({\rm B}^0)~(2011) &= 0.0051 \pm 0.0090~({\rm stat.}) \pm 0.0049~({\rm syst.}) \\ A_{\rm P}({\rm B}^0)~(2012) &= -0.0105 \pm 0.0060~({\rm stat.}) \pm 0.0013~({\rm syst.}) \\ A_{\rm P}({\rm B}^0_{\rm s})~(2011) &= -0.0111 \pm 0.0288~({\rm stat.}) \pm 0.0050~({\rm syst.}) \\ A_{\rm P}({\rm B}^0_{\rm s})~(2012) &= 0.0178 \pm 0.0196~({\rm stat.}) \pm 0.0053~({\rm syst.}) \end{split}$$

- Still need to evaluate some systematic errors on $A_P(B_s^0)$
- No evidence of a dependence of production asymmetries on p_T and y with current precision

$A_p(B^+)$

- The following decay has been used:
 - $B^+ \rightarrow J/\psi(\mu\mu)K^+$ (3 fb⁻¹)
- The production asymmetry as a function of p_T and y can be expressed as:

$$A_{\rm P}^{i}(B^{+}) = A_{raw}^{i}(B^{+}) - A_{D}^{i}(K^{+}) - A_{CP}(B^{+} \rightarrow J/\psi K^{+})$$

$$A_{raw}^{i}(B^{+}) = \frac{N^{i}(B^{-}) - N^{i}(B^{+})}{N^{i}(B^{-}) + N^{i}(B^{+})}$$
Kaon detection asymmetry (see next slide)
Value taken from PDG (or upcoming LHCb measurement)
Use the invariant mass spectrum of each bin
where *i* runs over the (p_T,y) B⁺ bins.

 P_{T} [GeV/c]

Kaon detection asymmetry

- Kaon detection asymmetry depends on kaon momentum
- We use $D^+ \rightarrow K^-\pi^+\pi^+$ and $D^+ \rightarrow \overline{K}{}^0\pi^+$ decays:

$$A_{\rm raw}(K^{-}\pi^{+}\pi^{+}) = A_{\rm P}(D) + A_{\rm D}(K^{+}\pi^{-}) + A_{D}(\pi^{+})$$
$$A_{\rm raw}(\overline{K}^{0}\pi^{+}) = A_{\rm P}(D) + A_{\rm D}(\pi^{+}) + A_{\rm D}(\overline{K}^{0})$$

ke difference of the two above equations
$$A_{\rm D}(K^{0}) = +0.054 \pm 0.014$$

Take difference of the two above equations

$$A_D(K^-\pi^+) - A_D(K^0) = A_{raw}(K^-\pi^+\pi^+) - A_{raw}(\bar{K}^0\pi^+)$$

- Reweighting procedure to have perfect cancellation of $A_{\rm P}(D)$ and $A_{\rm D}(\pi^+)$
- Measure above quantity in bins of kaon momentum:

$$A_D^i(K^+) = \sum_{j=1}^{N_{bin}^{K^+}} f_{i,j} A_D^j(K^-\pi^+) - A_D(K^0) \quad \Leftarrow$$

Detection asymmetry reweighted in each B⁺ bin according to the K⁺ momentum $f_{i,i} \rightarrow$ Fraction of events in each *j*-th K⁺ momentum bin, calculated for every *i*-th B^+ p_T and y bin

_HCp-A

A-2013-055

Possible measurement of $A_{CP}(KK)$ and $A_{CP}(\pi\pi)$

• Using $D^{*+} \rightarrow D^0(K^+K^-)\pi^+$ and $D^{*+} \rightarrow D^0(K^-\pi^+)\pi^+$ decays, one can write the following relations:

 $A_{raw}(KK/\pi\pi) = A_{CP}(KK/\pi\pi) + A_D(D^*) + A_D(\pi_s)$ $A_{raw}(K\pi) = A_{CP}(K\pi) + A_D(D^*) + A_D(\pi_s) + A_D(K\pi)$

Subtracting the two raw asymmetries one obtains:

 $A_{CP}(KK/\pi\pi) = A_{raw}(KK/\pi\pi) - A_{raw}(K\pi) + A_D(K\pi)$

• We can correct for $A_D(K\pi)$ using the measurement we already employed for

B⁺ production asymmetry

• First estimate : $A_{CP}(KK) = (x.xx \pm 0.09)\%$, $A_{CP}(\pi\pi) = (x.xx \pm 0.16)\%$

Results

LHCb-ANA-2015-030

 ± 0.0031 (stat.) ± 0.0017 (syst.)

- We measured $A_{P}(B^{0})$ in the range
 - $0 < p_T < 30 \text{ GeV/c and } 2.1 < y < 4.5:$ $A_P(B^+) (2011) = -0.0059 \pm 0.0023 \text{ (stat.)} \pm 0.0015 \text{ (syst.)} \pm 0.0060 \text{ (A}_{CP})$ $A_P(B^+) (2012) = -0.0064 \pm 0.0015 \text{ (stat.)} \pm 0.0008 \text{ (syst.)} \pm 0.0060 \text{ (A}_{CP})$
- No evidence of a dependence of production asymmetries on p_T and y with current precision

Λ⁰_b production asymmetry results

 Using the B⁰, B⁰_s and B⁺ production asymmetries measurements just presented, we obtain:

 $\begin{aligned} A_{\rm P}(\Lambda_{\rm b}^0) \ (2011) &= 0.0319 \pm 0.0227 \ ({\rm stat.}) \pm 0.0072 \ ({\rm syst.}) \pm 0.0060 \ (A_{\rm CP}({\rm B}^+ \rightarrow {\rm J}/\psi{\rm K}^+ \)) \\ A_{\rm P}(\Lambda_{\rm b}^0) \ (2012) &= 0.0337 \pm 0.0148 \ ({\rm stat.}) \pm 0.0053 \ ({\rm syst.}) \pm 0.0060 \ (A_{\rm CP}({\rm B}^+ \rightarrow {\rm J}/\psi{\rm K}^+ \)) \end{aligned}$

- Still need to evaluate some systematics uncertainties
- No evidence of a dependence of production asymmetries on p_T and y with current precision

CP violation measurement in time-integrated $D^0 \rightarrow K^+K^-$ and $D^0 \rightarrow \pi^+\pi^-$ decay rates

Experimental status

 Current world averages are: A_{CP}(KK) = (-0.15 ± 0.11)% A_{CP}(ππ) = (+0.10 ± 0.12)% ΔA_{CP} = A_{CP}(KK) - A_{CP}(ππ) = (-0.15 ± 0.11)%

 This analysis will have a precision

comparable with the world average of ΔA_{CP}

Experiment	ΔA_{CP}	¹ pion-tagged
CDF	$(-0.62 \pm 0.21 \pm 0.10)\%$	² muon-tagged
BaBar	$(+0.24\pm0.62\pm0.26)\%$	
Belle	$(-0.87 \pm 0.41 \pm 0.06)\%$	
LHCb $(0.6 \text{ fb}^{-1})^1$	$(-0.82 \pm 0.21 \pm 0.11)\%$	
LHCb $(1.0 \text{ fb}^{-1})^1$	$(-0.34 \pm 0.15 \pm 0.10)\%$	
LHCb $(3.0 \text{ fb}^{-1})^2$	$(+0.14 \pm 0.16 \pm 0.08)\%$	

ΔA_{CP} definition

 The raw asymmetry contains several terms in addition to the physical asymmetry

Taking the difference between raw asymmetries

$$\Delta A_{CP} \equiv A_{raw}(KK) - A_{raw}(\pi\pi) = A_{CP}(KK) - A_{CP}(\pi\pi)$$

where the D^{*} production asymmetry and the slow pion detection asymmetry **cancel out**

The ΔA_{bkg} saga

- Analysis essentially at the end of review (February 2015), but...
- ... checks on difference of background raw asymmetries in δm lead to further investigation
 - Baseline analysis: $\Delta A_{bkg} = A_{bkg}(KK) A_{bkg}(\pi\pi) = (-0.455 \pm 0.130)\% \rightarrow 3.4\sigma$ from zero
 - This result could indicate a non perfect cancellation of detection asymmetries
- Effect due to the nature of background
 - **Combinatorial background** (D^0 + random π): different π reconstruction efficiencies when associated with $D^0 \rightarrow K^+K^-$ or $D^0 \rightarrow \pi^+\pi^-$ decays
 - **Physical background**: if one of the D⁰ daughters is mis-identified, one expects an additional detection asymmetry due to the asymmetric D⁰ final state

The ΔA_{bkg} solution

Solution: apply tighter PID cuts to K⁺K[−] candidates
ΔA_{bkg} = (-0.222 ± 0.130)% → 1.7σ from zero

- Increase precision on ΔA_{bkg} measurement
 - Extend $\delta m = m(D^*) m(D^0) m(\pi)$ fitting range from 12 to 16 MeV/c²
 - $\Delta A_{bkg} = (-0.272 \pm 0.107)\% \rightarrow 2.7\sigma \text{ from zero}$
- Investigate the presence of mis-ID physical background
 - Define daughters momentum asymmetry
 - $\alpha = [p(h^{-}) p(h^{+})]/[p(h^{-}) + p(h^{+})]$

- Fit (χ^2 /ndof = 1.22)

 $\delta m (MeV/c^2)$

···· Background

+ data

10

LHCb

- Only one particle type in final state (KK, $\pi\pi$): α simmetric around 0
- Different particles in final state: α not simmetric around 0
- Large asymmetry only in $D^0 \rightarrow K^+K^-$
 - Presence of one or more mis-ID background

Summary

- ΔA_{bkg} is now 1.7 σ from zero
- ΔA_{CP} value **stable** indipendently of different δm ranges and tighter PID cuts

	$\Delta A_{\rm bkg}$ [%]	$\Delta A_{\rm CP}$ [%]
Baseline	-0.445 ± 0.130	0.276 ± 0.078
$\delta m \in [0.2 - 16] \mathrm{MeV}/c^2$	-0.272 ± 0.107	0.257 ± 0.078
$\delta m \in [12 - 16] \text{ MeV}/c^2$	0.096 ± 0.189	_
tight PID cuts	-0.391 ± 0.155	0.280 ± 0.088
$\delta m \in [0.2 - 16] + \text{tight PID cuts}$	-0.222 ± 0.130	0.263 ± 0.088
$\delta m \in [12 - 16] \operatorname{MeV}/c^2 + \operatorname{tight} \operatorname{PID} \operatorname{cuts}$	0.138 ± 0.230	_

- ΔA_{CP} analysis performed with 2011 and 2012 data
 - Total statistical error is 0.08% (2011+2012)
 - Total systematic error is 0.03%
 - Most precise single measurement of CP violation in charm sector to date
 - 2012 result still **BLIND**
- Analysis close to unblinding and then approval

CP violation measurement in time-dependent B → hh decays

Experimental status – Time dipendent CP

asymmetries in $B^0 \rightarrow \pi^+\pi^-$ and $B^0_s \rightarrow K^+K^-$

decays

Rsults published in HEP 10 (2013) 183

General observations

- Previous analysis based on 1 fb⁻¹
 - Expect a factor ~ x 3 in statistics using the full dataset
- Only OS taggers used
 - Run 1 effective tagging power: $\varepsilon_{eff} = (2.45 \pm 0.25)\%$
 - Expect ~ x 1.5 in ε_{eff} due to SSk for $B_s^0 \rightarrow K^+K^-$ decay
 - Expect ~ x 1.5 in ε_{eff} due to SS π and SSp (new) for B⁰ $\rightarrow \pi^+\pi^-$
- Fundamental points in analysis update
 - SSk calibration depends on $B_s^0 \rightarrow K^+\pi^-$ statistic
 - It is possible to use official calibrations from FT group
 - Decay time resolution \rightarrow dominant systematic uncertainty in $B_s^0 \rightarrow K^+K^-$ decay

Analysis update status

- New fit code
 - Execution time largely reduced
 - Simultaneous fit of K⁺ π^- , K⁻ π^+ , $\pi^+\pi^-$, K⁺K⁻ spectra
 - Event by event decay time resolution and mistag-fraction
- New code is currently being validated with MC signal events
 - For now only OS, SSk, SSπ taggers
 - Will include also SSp and OS_charm

Search for rare decay $B^0 \rightarrow K^+K^-$

Motivations

- The $B^0 \rightarrow K^+ K^-$ decay is still unobserved
- The $B^0 \rightarrow K^+ K^-$ decay is governed by pure penguin annihilation topologies
 - Good probe for NP effects
- Expected BR ~ 10⁻⁷ 10⁻⁸

BR x 10 ⁻⁶						
BaBar	Belle	CDF	LHCb	HFAG		
$0.04 \pm 0.15 \pm 0.08$	$0.10 \pm 0.08 \pm 0.04$	$0.23 \pm 0.10 \pm 0.10$	$0.11^{+0.05}_{-0.04} \pm 0.06$	0.12 ± 0.05		

• **BLIND** analysis

Analysis status

- Invariant mass model and other components already studied
- Event selection has been optimized
 - Find set of cuts (BDT+∆logL) giving a 5σ significance on the smallest BR(B⁰ → K⁺ K⁻)
- Final fit of all H_b → h⁻h^{'+} spectra has been validated using fast MC toys
 - Pulls of relevant variables do not show problems

Conclusions

- Analysis is in an advanced status and major problems have been adressed
- Main sources of systematic uncertainties have been identified and studied
 - Parametrization of radiative tail
 - Combinatorial background model
 - PID calibration
 - Model of cross-feed background
 - Model of 3-body partially reconstructed background
- Analysis ready to go to review

D⁰ **production asymmetry**

D⁰ production asymmetry: strategy

• We reconstruct prompt D^o decaying into K⁺ π^{-} final state.

• We can write the raw asymmetry as:

$$A_{\text{raw}}(K\pi) = A_D(K\pi) + A_P(D^0)$$

stracted from
Same as for B⁺
production

E the invariant mass fits

asymmetry

• Big statistics allow to have finer binning (10x10) w.r.t. B mesons production asymmetry measurements Analysis nearly ended

Backup slides

Data sample and event selection

 $B^0 \to J/\psi K^{*0}$ (2012)

 $225\,302\pm825$

 $69\,126\pm723$

LHCb

🔶 data

10

···· Background

- We used the full 2011 and 2012 data sample collected by the LHCb detector
- PID requirements to suppress background due to mis-ID of final state particles

 $B^0 \to J/\psi K^{*0}$ (2011)

 $95\,081\pm 369$

 $26\,972\pm260$

2,7000

5000

4000 E

3000 E

2000 E 1000 E

0.1 6000

Events

- Multivariate analysis (BDT) to suppress combinatorial background
- From maximum likelihood fits we obtain:

LHCb

🔶 data

5.3

— Fit (χ²/ndof = 1.35)

···· Comb. background

 $m_{\mu\mu K\pi} \, (GeV/c^2)$

Parameter

 $N_{B^0(s)}^{\text{phys}} \rightarrow D^-$

 $B^{0}{}_{(s)} \rightarrow D^{*-}{}_{(s)}\pi^{+}$

 $\bar{B}^0 \rightarrow J/\psi K^{*0} 2011$

5.25

 N^{sig}

 N^{comb}

 N^{phys}

(0:001 GeV/c²) 000 000 0005

Events / (000 1000

