

Search for $C\!P$ violation in $A^0_b(\varXi^0_b)\to p3h$ (h = $\pi,{\rm K})$ and study of $B^0_{(s)}\to J/\psi p\bar{p}$

Jinlin Fu

INFN Sezione di Milano LHCb Italia Collaboration Meeting INFN-LNF, Oct 13-14, 2015 First observation of $\Lambda_b^0(\Xi_b^0) \to ph^-h^+h^-$ decays and First measurement of $C\!P$ violation using triple product asymmetries in $\Lambda_b^0(\Xi_b^0) \to ph^-h^+h^-$ decays.

• *CPV* never observed in baryon sector, possible large *CPV* from interference between tree and penguin diagram.

 Triple products (TP) in A⁰_b decays particularly sensitive to new physics: "Triple products which are expected to vanish in the SM can be enormous (50%) in the presence of new physics" Phys.Rev. D66 (2002) 094004; arXiv:hep-ph/0208054v2

Experimental Technique

• \widehat{T} -odd triple products: in Λ_b^0 , $\overline{\Xi}_b^0$ ($\overline{\Lambda}_b^0$, $\overline{\Xi}_b^0$) rest frame $C_T \equiv \vec{p}_p \cdot (\vec{p}_h \times \vec{p}_{h'})$, for Λ_b^0 , $\overline{\Xi}_b^0$; $\overline{C}_T \equiv \vec{p}_{\overline{p}} \cdot (\vec{p}_{\overline{h}} \times \vec{p}_{\overline{h'}})$, for $\overline{\Lambda}_b^0$, $\overline{\Xi}_b^0$ choose the one with higher momentum for the identical charged tracks.

•
$$\widehat{T}$$
-odd observables:
 $A_{\widehat{T}} \equiv \frac{N(C_T > 0) - N(C_T < 0)}{N(C_T > 0) + N(C_T < 0)}$, for Λ_b^0 , $\overline{\Xi}_b^0$;
 $\overline{A}_{\widehat{T}} \equiv \frac{N(-\overline{C}_T > 0) - N(-\overline{C}_T < 0)}{N(-\overline{C}_T > 0) + N(-\overline{C}_T < 0)}$, for $\overline{\Lambda}_b^0$, $\overline{\Xi}_b^0$

theoretical interests on TP: arXiv1506.01346,1508.03054

True CP-violating observable: cancel FSI effects

 $a_{CP}^{\widehat{T}\text{-}\mathsf{odd}} = \frac{1}{2} \big(A_{\widehat{T}} - \bar{A}_{\widehat{T}} \big)$

• $\Lambda_b^0/\overline{\Lambda}_b^0$ production asymmetry and p/\overline{p} , h^+/h^- reconstruction asymmetry cancel in definition \Rightarrow low systematic uncertainty.

• Complementary approach to A_{CP} asymmetry method: $A_{CP} \propto \sin(\delta_1 - \delta_2) \sin(\phi_1 - \phi_2)$: 1,2 different amplitudes $a_{CP}^{\widehat{T}\text{-odd}} \propto \cos(\delta_k - \delta_j) \sin(\phi_k - \phi_j)$: k,j different partial wave amplitudes

- Previous measurements of A_{CP} consistent with no CPV.
- No experiment performed using $a_{CP}^{\widehat{T}\text{-odd}}$ method so far.

Collaboration	A_{CP}
CDF	$A_{CP}(\Lambda_b^0 \to pK^-) = 0.37 \pm 0.17_{stat} \pm 0.03_{syst}$ [1]
	$A_{CP}(\Lambda_b^0 \to p\pi^-) = 0.03 \pm 0.17_{stat} \pm 0.05_{syst}$ [1]
LHCb	$A_{CP}(\Lambda_b^0 \to \overline{K^0} p \pi^-) = 0.22 \pm 0.13_{stat} \pm 0.03_{syst}[2]$
LHCb	$A_{CP}(\Lambda_b^0 \to J/\psi p\pi^-)$
	$-A_{CP}(\Lambda_b^0 \to J/\psi p K^-) = [5.7 \pm 2.4_{stat} \pm 1.2_{syst}]\%$ [3]

Phys. Rev. Lett. 106 (2011) 181802
 JHEP 04 (2014) 087
 JHEP 1407 (2014)

- Authors: Jinlin Fu, Maurizio Martinelli, Andrea Merli, Nicola Neri.
- Have completed the blind analysis on stripping21 data $(3fb^{-1})$.
- Received sign-off from WG reviewers.
- Waiting for 1st round of comments from RC (StevePlayfer, Mike Sokoloff).

Selection

- Stripping21, Xb2phhhline
- Trigger requirement
 - \Box L0: Hadron TOS or Global TIS on Λ_b^0
 - \Box HLT1: TrackAllL0 TOS on Λ_b^0
 - □ HLT2: Topo(2,3,4)(Simple,BBDT) TOS on Λ_b^0
- Veto resonances, c-quark long lived particles.
- BDT selection: using $\Lambda_b^0 \rightarrow p K^- \pi^+ \pi^-$ real data sample for all p3h decays.
- PID_{π,K,p} optimization : use control samples composed of vetoed resonances after BDT.
- Multiple candidates: retain one candidate per event by random choice.

Signal model: from MC(sum of Crystal Ball) $pdf_{sig} = f \cdot CB_1(\mu, \sigma, \alpha_1, n_1) + (1 - f) \cdot CB_2(\mu, \sigma, \alpha_2, n_2)$ tail parameters (α ,n) and fraction (f) fixed from MC

Background model:

- Combinatorial background: exponential function
- Partially-reconstructed backgrounds: Argus function convoluted with a Gaussian function
- □ Cross-feed: $\Lambda_b^0 \to p3h, B^0/B_s^0 \to 4h$ Described by MC shape (RooKeysPdf) Gaussian constraint yields from mass fit in data assuming particle misidentification.

Invariant mass fit

Example of $\Lambda_b^0 \rightarrow p K^- \pi^+ \pi^-$, blind results.

$$\begin{split} A_{\widehat{T}} &= (-3.29 \pm 1.12_{stat.}) \times 10^{-2} \\ \bar{A}_{\widehat{T}} &= (-10.50 \pm 1.18_{stat.}) \times 10^{-2} \\ a_{CP}^{\widehat{T}\text{-odd}} &= (3.60 \pm 0.81) \times 10^{-2} \end{split}$$

Systematic Uncertainty Sources

- **Experimental bias**: induced by the experimental reconstruction, detector acceptance, and the selection criteria.
 - □ a possible experimental bias estimated using control sample (cs) $\Lambda_b^0 \rightarrow \Lambda_c^+ (\rightarrow p K^- \pi^+) \pi^-$, *CPV* in SM expected to be consistent with zero.
 - □ assign the statistical uncertainty on $a_{CP}^{\widehat{T}\text{-odd}}$ ($\Lambda_b^0 \to \Lambda_c^+ (\to pK^-\pi^+)\pi^-$) as a systematic uncertainty on signal decays.
 - $\label{eq:conservatively estimate systematic uncertainties on $A_{\widehat{T}}$ and $\bar{A}_{\widehat{T}}$ as $\sigma(A_{\widehat{T}}) = \sigma(\bar{A}_{\widehat{T}}) = \sqrt{2}\sigma(a_{CP}^{\widehat{T}\text{-odd}})_{cs}$.}$
- Fit Model: due to parametrisation of the signal and background shapes of reconstructed m(p3h), estimated from toy studies.
- Detector resolution: due to the resolution on triple products C_T and *C*_T, bias between the reconstructed and generated asymmetries in MC sample assumed as systematic uncertainties.

■ First observations: $\begin{array}{l} \Lambda^0_b \rightarrow pK^-\pi^+\pi^-, \Lambda^0_b \rightarrow pK^-K^+K^-, \Lambda^0_b \rightarrow p\pi^-\pi^+\pi^-, \Lambda^0_b \rightarrow \\ pK^+K^-\pi^-, \Xi^0_b \rightarrow pK^-K^-\pi^+, \Xi^0_b \rightarrow pK^-\pi^+\pi^-, \Xi^0_b \rightarrow pK^-K^+K^-. \end{array}$

Best sensitivity to CPV in b-baryon decays, so far.

Decay	$A_{\widehat{T}}$ (%)	$ar{A}_{\widehat{T}}$ (%)	$a_{CP}^{\widehat{T}\text{-odd}}$ (%)
$\begin{array}{c} \Lambda^0_b \rightarrow pK^-\pi^+\pi^- \\ \Lambda^0_b \rightarrow pK^-K^+K^- \\ \Lambda^0_b \rightarrow p\pi^-\pi^+\pi^- \\ \Lambda^0_b \rightarrow pK^+K^-\pi^- \\ \Xi^0_b \rightarrow pK^-K^-\pi^+ \end{array}$	$\begin{array}{l} x.x\pm 1.12_{\rm stat}\pm 0.45_{\rm syst} \\ x.x\pm 2.10_{\rm stat}\pm 0.70_{\rm syst} \\ x.x\pm 2.06_{\rm stat}\pm 0.45_{\rm syst} \\ x.x\pm 6.78_{\rm stat}\pm 1.82_{\rm syst} \\ x.x\pm 7.46_{\rm stat}\pm 0.49_{\rm syst} \end{array}$	$\begin{array}{l} x.x\pm 1.18_{\rm stat}\pm 0.44_{\rm syst} \\ x.x\pm 2.14_{\rm stat}\pm 0.46_{\rm syst} \\ x.x\pm 2.06_{\rm stat}\pm 0.44_{\rm syst} \\ x.x\pm 6.08_{\rm stat}\pm 0.48_{\rm syst} \\ x.x\pm 6.83_{\rm stat}\pm 0.48_{\rm syst} \end{array}$	$\begin{array}{l} x.x \pm 0.81_{\rm stat} \pm 0.31_{\rm syst} \\ x.x \pm 1.50_{\rm stat} \pm 0.41_{\rm syst} \\ x.x \pm 1.45_{\rm stat} \pm 0.32_{\rm syst} \\ x.x \pm 4.55_{\rm stat} \pm 0.83_{\rm syst} \\ x.x \pm 5.06_{\rm stat} \pm 0.34_{\rm syst} \end{array}$

Measurements in the phase space regions

- In order to improve the sensitivity to CPV, a measurement is performed in 5D phase space regions: $m_{ph^-}^2$, $m_{h^+h^-}^2$, $\cos \Theta_{ph^-}$, $\cos \Theta_{h^+h^-}$, Φ .
- Two binning schemes:

□ divide into 8 or 4 regions with equal statistics.

Decays	bins	variables	$P_{\mu\nu}$
$\Lambda_b^0 \to p K^- \pi^+ \pi^-$	8	$m_{pK^{-}}^{2}$, $m_{\pi^{+}\pi^{-}}^{2}$, $\phi_{(pK^{-},\pi^{+}\pi^{-})}$	€ Bert
$\Lambda_b^0 \to p K^- K^+ K^-$	8	$m_{pK_{\text{fast}}}^2$, $m_{K^+K_{\text{slow}}}^2$, $\phi_{(pK_{\text{fast}},K^+K_{\text{slow}})}$	$z = \frac{\Theta_{h'h}}{P_{h'}}$
$\Lambda^0_b \to p \pi^- \pi^+ \pi^-$	8	$m_{p\pi_{f-1}}^{2}$, $m_{\pi^{+}\pi^{-}_{1}}^{2}$, $\phi_{(p\pi_{f-1}^{-},\pi^{+}\pi_{slow}^{-})}$	
$\Lambda_b^0 \to p K^+ K^- \pi^-$	4	$m_{p\pi^{-}}^{2}, m_{K^{+}K^{-}}^{2}$	
$\Xi_b^0 \to p K^- K^- \pi^+$	4	$m_{pK_{\text{fast}}}^2$, $m_{\pi^+K_{\text{slow}}}^2$	

- □ divided into two regions with bin boundaries choosen at $\Phi = \frac{\pi}{2}$. arXiv:1508.03054v1
- To estimate the compatibility with the no CPV hypothesis, a χ² test w.r.t the hypothesis of a^{T̂}_{CP} = 0 is performed.

 $\Lambda_{\rm b}$ rest frame

Study of $B^0_{(s)} \to J/\psi p \bar{p}$

Physics Motivation (1)

• Never observed, UL with $1fb^{-1}$ at LHCb. arXiv:1306.4489

- $B_s^0 \rightarrow J/\psi p\bar{p}$ via $s\bar{s} \rightarrow p\bar{p}$ leads to OZI suppression w.r.t $B^0 \rightarrow J/\psi p\bar{p}$ via $d\bar{d} \rightarrow p\bar{p}$.
- The OZI suppression can be lifted by a possible tensor glueball condidate $f_J(2220) \rightarrow p\bar{p}$ in B_s^0 decay, while forbidden by the phase space in B^0 decay. arXiv:1412.4900

- To investigate pentaquarks in $[J/\psi p]$ or $[J/\psi \bar{p}]$ system:
 - \square $B_{(s)}^0$ phase space does not allow $P_c(4380)/P_c(4450)$.
 - □ some lighter candidates: $[\Lambda_c \overline{D^*}] \sim 4295$ MeV, $[\Sigma_c \overline{D}] \sim 4321$ MeV. arXiv:1506.06386
 - $\hfill\square$ a natural extension to $\Upsilon(1S)\to J\psi p\bar{p}$ with the same ntuple maker.
- To investigate near threshold enhancement in $p\bar{p}$ structure observed in many decays.

- stripping21, FullDSTDiMuonJpsi2MuMuDetachedLine.
- decay chain constructed by detached J/ψ and StdAllNoPIDsProtons with kinematic cuts on $B^0_{(s)}$ candidates.
- Decay tree fitter with J/ψ mass constraint, and loose PID cuts.

With hundreds of events, moment analysis could be exploited.

- proponents: Biplab Dey, Jinlin Fu, Nicola Neri.
- Establish decay modes, measure branching fraction, and investigate $J/\psi p\bar{p}$ Dalitz plot, with $3fb^{-1}$.
- BDT selection:
 - □ signal: MC, background: right sideband.
 - □ few kinematic variables, ProbNNp and isolation variables to build classifier.
- FOM: for branching fraction, $\frac{\epsilon}{\frac{\alpha}{2} + \sqrt{B}}$; for angular analysis, $\frac{S}{\sqrt{S+B}}$.
- Normalisation mode: $B_s \rightarrow J/\psi K^+ K^-$.

THANK YOU

Backup

- Dataset splitted into 4 samples depending on Λ_b^0 flavor and C_T value.
- The number of signal events retrieved by simultaneous fit to the four distributions of m(p3h). Asymmetry parameters $A_{\widehat{T}}$, $\overline{A}_{\widehat{T}}$ extracted from the fit.

$$\begin{split} N_{A_b^0, C_T > 0} &= \frac{1}{2} N_{A_b^0} (1 + A_{\widehat{T}}), \\ N_{A_b^0, C_T < 0} &= \frac{1}{2} N_{A_b^0} (1 - A_{\widehat{T}}), \\ N_{\overline{A}_b^0, -\overline{C}_T > 0} &= \frac{1}{2} N_{\overline{A}_b^0} (1 + \overline{A}_{\widehat{T}}), \\ N_{\overline{A}_b^0, -\overline{C}_T < 0} &= \frac{1}{2} N_{\overline{A}_b^0} (1 - \overline{A}_{\widehat{T}}). \end{split}$$

- Two measurements
 - $\hfill\square$ Measurement integrated in the phase space.
 - □ Measurement in different regions of the phase space.
- $A_{\widehat{T}}$, $\overline{A}_{\widehat{T}}$ are masked with different unknown random offsets, until the systematics have been measured and the results approved by referees.

- Stability checks: different year, magnet polarity, data taking period, and different L0 trigger requirements, compatible with statistical fluctuations.
- Checks on Multiple Candidates treatment: different random seed for different choice, compatible with statistical fluctuations.
- Checks on signal reconstruction efficiency versus C_T value:
 - \Box No correlations among discriminating variables and C_T (data, MC),
 - □ Raito of efficiencies w.r.t different sign of C_T is compatible with one (signal MC and Control sample $\Lambda_b^0 \to (\Lambda_c^+ \to pK^-\pi^+)\pi^-)$.
- Checks on PID effects: Using control sample, PID criteria for final particles are varied. Differences of asymmetries are compatible with statistical fluctuations.

Summary of Systematic Uncertainties

	Decay	Contribution	$\Delta A_{\widehat{T}}(\%)$	$\Delta \bar{A}_{\widehat{T}}(\%)$	$\Delta a_{CP}^{\widehat{T}\text{-}odd}(\%)$
	$\Lambda_b^0 \to p K^- \pi^+ \pi^-$	$\begin{array}{c} Experimental\ bias\\ C_T \ \text{resolution}\\ Fit\ model \end{array}$	${\pm 0.44} \\ {\pm 0.01} \\ {\pm 0.09}$	${\pm 0.44} {\pm 0.01} {\pm 0.04}$	${\pm 0.31} \\ {\pm 0.01} \\ {\pm 0.02}$
		Total	± 0.45	± 0.44	± 0.31
	$\Lambda_b^0 \to p K^+ K^- \pi^-$	$\begin{array}{c} {\rm Experimental\ bias}\\ C_T \ {\rm resolution}\\ {\rm Fit\ model} \end{array}$	${\pm 0.44} \\ {\pm 0.10} \\ {\pm 1.76}$	${\pm 0.44} \\ {\pm 0.03} \\ {\pm 0.18}$	${\pm 0.31} \\ {\pm 0.06} \\ {\pm 0.77}$
		Total	± 1.82	± 0.48	± 0.83
	$\Lambda_b^0 \to p K^- K^+ K^-$	$\begin{array}{c} {\rm Experimental\ bias}\\ C_T \ {\rm resolution}\\ {\rm Fit\ model} \end{array}$	${\pm 0.44} \\ {\pm 0.00} \\ {\pm 0.55}$	${\pm 0.44} \\ {\pm 0.10} \\ {\pm 0.06}$	${\pm 0.31} \\ {\pm 0.05} \\ {\pm 0.26}$
		Total	± 0.70	± 0.46	± 0.41
	$\Lambda_b^0 \to p \pi^- \pi^+ \pi^-$	$\begin{array}{c} {\rm Experimental\ bias}\\ C_T\ {\rm resolution}\\ {\rm Fit\ model} \end{array}$	$\pm 0.44 \\ \pm 0.09 \\ \pm 0.06$	${\pm 0.44} \\ {\pm 0.01} \\ {\pm 0.06}$	${\pm 0.31} \\ {\pm 0.05} \\ {\pm 0.04}$
		Total	± 0.45	± 0.44	± 0.32
_	$\Xi_b^0 \to p K^- K^- \pi^+$	$\begin{array}{c} {\rm Experimental\ bias}\\ C_T \ {\rm resolution}\\ {\rm Fit\ model} \end{array}$	${\pm 0.44} \\ {\pm 0.06} \\ {\pm 0.21}$	$\pm 0.44 \\ \pm 0.01 \\ \pm 0.20$	${\pm 0.31} \\ {\pm 0.02} \\ {\pm 0.15}$
		Total	± 0.49	± 0.48	± 0.34

The main contribution is from experimental bias or fit model.

J. Fu (INFN-Milano)

LHCb-Italia, INFN-LNF, Oct 13-14, 2015