UT status report

Nicola Neri on behalf of the Milano UT group

INFN - Sezione di Milano

13-14 Ottobre 2015 - LNF

Outline

- Overview of UT upgrade
- Activity in Milano
- Conclusions

LHCb detector

UT group

Motivations for UT upgrade

- Main motivations for TT replacement:
 - Beetle chip is not compatible with the 40 MHz readout: it is an integral part of the detector module
 - radiation hardness: particularly demanding for inner sensors (40 MRad max dose)
 - finer detector granularity: reduce the occupancy at high rates
 - Improved coverage at small polar angle: reduced beam pipe clearance, circular cut out of the sensors around the beam pipe
- Main changes and challenges in UT design:
 - readout electronics (ASICs + hybrids) in the active area: improves S/N but increases material budget and power dissipation
 - evaporative CO₂ cooling is required to operate the sensors at T=-5°C to reduce leakage current and prevent thermal runaway in presence of radiation damage

Fluence and dose

• up to 40 MRad

after 50 fb⁻¹ (including safety factor 2)

- to mitigate effects of radiation damage:
 - keep sensors below 5°C
 - n-in-p sensors in inner-most region (p-in-n in outer region to save cost)

Layout

- four detection layers
 - 2 × vertical strips
 - +/- 5° stereo views
- three silicon sensor geometries
 - coarser granularity in outer region
 - finer granularity in inner region
- silicon sensors and read-out chips mounted onto 130 cm long "staves"
- to avoid gaps in acceptance
 - · detectors on both sides of stave
 - adjacent staves overlapping
- to minimize acceptance loss around LHC beam pipe
 - inner-most sensors circular cut-outs

in light-tight,

thermally

insulating

box

Stave design

inspired by ATLAS stave concept

- detector modules mounted on both sides to provide full acceptance coverage
- sensor + front-end hybrid + stiffener
- precise positioning of detector modules
 - rigid core consisting of sandwich structure
- cooling of sensors and front-end electronics
 - bi-phase CO_2 at ~ 30 bar as coolant
 - Titanium cooling pipe, 2 mm Ø
 - "snake design" to optimize heat path to ASICs
- transport of signal readout, control signals, low voltage, bias voltage to detector modules
 - Kapton flex cable mounted onto stave core, underneath detector modules

Stave design

inspired by ATLAS stave concept

- detector modules mounted on both sides to provide full acceptance coverage
- sensor + front-end hybrid + stiffener
- precise positioning of detector modules
 - rigid core consisting of sandwich structure
- cooling of sensors and front-end electronics
 - bi-phase CO_2 at ~ 30 bar as coolant
 - Titanium cooling pipe, 2 mm Ø
 - "snake design" to optimize heat path to ASICs
- transport of signal readout, control signals, low voltage, bias voltage to detector modules
 - Kapton flex cable mounted onto stave core, underneath detector modules

Silicon sensors

	Туре А	Туре В	Type C	Type D
Substrate Type	n (oxyg.)	р	р	р
Chip size x (+ strip) (cm)	9.75	9.75	9.75	9.75
Chip size y(11 strip)(cm)	9.95	9.95	5.155	5.155
Thickness (µm)	250/320	250	250	250
Wafer resistivity	3-5 KΩcm	3-5 KΩcm	3-5 KΩcm	3-5 KΩcm
# of strips	512	(1024 0 µm	1024	1024
Interstrip C (pf)	5-35	5-35	5-20	5-20
Breakdown V (V)	>700	>700	>700	>700
Total number	1020(888)	55(48)	20(16)	20(16)
	99.5 mm long 512 strips (p ~ 190 um)	99.5 mm long 1024 strips (p ~ 95 µm)	51.55 mm long 1024 strips (p ~ 95 μm)	51.55 mm long 1024 strips (p ~ 95 μm)

Silicon sensors

Circular cutouts (type D)

- layout of guard rings close to cut-out
 - charge collection efficiency, radiation hardness

Embedded pitch adaptors (type A)

- implemented as double-metal layer
 - reduce dead material
 - save one row of wire bonds
- two geometries under consideration
 - cross talk

• charge loss

- before and after irradiation
- external pitch adaptor as backup

Top-side biasing (all sensor types)

- connection to backplane via active edge
 - long-term performance, radiation hardness
- modified module design allowing for direct contact to backplane as backup

11

SALT readout chip

Custom development in radiation-hard 0.13 µm technology (IBM → TSCM)

- 128 channels: front–end amplifier \rightarrow shaper \rightarrow ADC \rightarrow pedestal subtraction
- zero-suppression \rightarrow data compression \rightarrow serialisation
- SLVS output drivers: (up to) five e-port links
- first version of full 8-channel prototype in hand, tests ongoing

INFN Milano activities

- Design and construction of:
 - flex cables
 - hybrid circuits for front-end electronics
- Design of CO₂ cooling system
 - Thermal and mechanical simulations of the UT stave
 - Cooling system prototype
- Test and characterisation of prototype silicon strip sensors
 - Test in laboratory
 - Test beam: developed new DAQ board and software for reconstruction and analysis of the data

LHCb Tracker TDR

Authors of Tracker TDR

A. Abba^u, F. Caponio^u, M. Citterio, S. Coelli, A. Cusimano^u, J. Fu, A. Geraci^u, M. Lazzaroni^t,
M. Monti, N. Neri, F. Palombo^t
²⁵Sezione INFN di Milano, Milano, Italy

- Responsibilities for UT upgrade
 - Sensor and Hybrids WG (M. Citterio co-convener)
 - Mechanics and Cooling WG (S. Coelli co-convener)
 - Integration with LHCb WG (N.Neri co-convener)
 - Editor of Tracking TDR (N. Neri "Mechanics and cooling" chapter)

Data flex design

- Technological challenge:
 - data flex positioned under the silicon sensors in the active area: carrying power, ground and data lines
 - low material budget (~0.1% X₀): Kapton + Cu (Al) traces
 - thousands of traces, 80 cm long and 10 cm wide
 - low impedance, signal integrity
 - few manufacturers available

Data flex - 1st prototypes

- First generation data flex
 - produced at industry
 - good signal transmission, low cross-talk: design validated
 - but low yield in production

INFN

Data flex - 2nd prototypes

- Technology: full flex + stiffener design
- Improvements: better trace shapes and width, added HV traces, stack with 4 layers (2 data + 2 power lines), larger space between traces
- CERN workshop is the baseline production facility. Received few samples in these days, starting the test
 - Contacts with other manufacturers: Altaflex (USA) visit company on Nov 6th. Also contacts with ViaSystem (USA), and Flexible Technology (UK)

Module design

- ► Low material budget and operations at T=-5 °C set stringent requirements on module design
- Efficient heat dissipation and electrical insulation for sensor and FEE
- Use of ceramic material: excellent thermal conductivity and electrical insulation Nicola Neri

INFN

Milano proposal for ceramic hybrid

With respect to v5 hybrid solution: no thermal vias, no hybrid flex, no epoxy layer Pro: improved thermal conductivity and cooling efficiency Simplified construction and mounting of the stave

8/05/2015

Mauro Citterio - UT Workshop May 2015

Thick-film technology for electronic circuitry Aurel produced AIN hybrids for BaBar SVT

Mechanical prototypes

250 um thick AIN substrate

Thermal & Mechanical simulations

Nicola Neri

INFN

20

CO₂ cooling setup in Milano

21

UT stave cooling test

"Control room" for CO₂ cooling system

TRACI CO2 system

Test beam activity

First prototypes from Micron and HPK

- not yet final thickness and technology
- irradiation with 24 GeV p at CERN irrad facility
 - up to 3.2 × 10¹³/cm² (type A), 7.4 × 10¹⁴/cm² (type D)
- test beam campaign using 180 GeV p at CERN
 - VELOpix beam telescope (\rightarrow 3 µm resolution)
 - Beetle readout chip for detectors under test

Milano contributions

- New DAQ system for testbeam
- Online software and GUI
- Offline reconstruction and simulation software
- Silicon strip sensor telescope

New DAQ system

- Developed in Milano a new DAQ system for testbeam:
 - 100x DAQ rate wrt previous Alibava system
 - improved trigger scheme and track matching (time stamp info for DUT hit-Telescope track matching)
 - online software: GUI, Beetle chip configuration, monitoring

synergy with Retina CSN5 experiment

DAQ system performed very well in July and October testbeam and was acknowledged by the UT collaboration

INFN

Offline software

- Software package (Sbt) for track reconstruction and analysis of testbeam data
- Data analysis

INFN

Nicola Neri

Jinlin Fu

Marco Petruzzo

"Retina" telescope

- Built in Milano a telescope based on TT silicon strip sensors and Beetle chip readout
- Artificial retina algorithm for real time tracking implemented in custom Mamba DAQ board (CSN5 project)
- First prototype of embedded real time tracking system based on retina algorithm

October 2015 testbeam

Telescope on beam at CERN:

- test of real time tracking performance: "retina response"
- test of UT DAQ system (can test also UT sensors in the future)

INFN

Testbeam crew

Mechanical workshop

For mechanics also: Simone Coelli Ennio Viscione Fabrizio Alberti

Summary

Summary

- R&D to demonstrate the viability of proposed key design solutions
 - silicon detector with embedded pitch adaptor, top-side biasing and circular cutout
 - new rad-hard front-end SALT chip
 - ceramic hybrid circuit
- Gradual transition to production phase in 2016-2017 to be ready for installation in mid 2019
- Milano group is effectively contributing to the UT project:
 - Flex cables design and production. 2nd generation flex cables produced at CERN
 - Milano AIN based hybrid solution. Aurel will produce first prototypes soon
 - Design of the CO₂ system architecture. Setup for cooling system test in Milano
 - Contribution to testbeam: DAQ system, reconstruction software, silicon telescope

Backup slides

Tesi di laurea

- M. Petruzzo, "First Prototype of a Tracking System with Artificial Retina for Fast Track Finding", October 2014 - now PhD student UniMi
- E. Spadaro Norella, "Analisi dei dati del test su fascio di prototipi di rivelatori al silicio a strip per l'upgrade dell' esperimento LHCb", March 2015 (laurea triennale)
- A. Merli, "Search for CP violation using T-odd correlations in $\Lambda^0{}_b \rightarrow ph^-h^+h^-$ and $\Xi_b{}^0 \rightarrow ph^-h^+h^-$ decays (h = K, π)", April 2015 borsista neolaureato INFN- now PhD student UniMi
- ▶ D. Marangotto, "Study of $\Lambda^0_{b} \rightarrow ph^{-}\mu^{+}\mu^{-}$ decays", ongoing
- D. Terzi, "Studies for an embedded tracking system using precise space and time information of the hit", ongoing

Contributions at conferences

- N. Neri, "First Prototype of a Tracking System with Artificial Retina for Fast Track Finding", IEEE Nuclear Science Symposium, Seattle, USA (November 2014)
- N. Neri, "First prototype of a silicon tracker with artificial retina", TREDI 2015, Trento (February 2015)
- N.Neri, "First results of the silicon telescope using an artificial retina for fast track finding", ANIMMA2015, Lisboa, Portugal (April 2015)
- J. Fu, "Ricerca di violazione di CP attraverso osservabili T-dispari in decadimenti di mesoni con charm", IFAE 2015, Roma (April 2015)
- N. Neri, "Production and decay of heavy flavour baryons", FPCP2015, Nagoya, Japan (May 2015)
- M. Petruzzo, "Real time tracking with a silicon telescope prototype using the "artificial retina" algorithm", Pisa Meeting 2015 (May 2015)
- B. Dey, "Recent Results from LHCb", SSI 2015, SLAC, (August 2015)
- A. Merli, "Ricerca di violazione di CP nei decadimenti Λ_b→ph⁻h⁺h⁺ con h=K,π a LHCb", SIF 2015, Roma (September 2015)
- B. Dey, "Experimental prospects in b->sll", Novel aspects of b to s transitions: investigating new channels, Marseille (October 2015)

Data flex design 1st generation

Prototypes 1st generation

- Nov14 2014, received first data-flex prototypes by Fineline.
- Long traces ~80cm. Difficult to manufacture: short and open on signal traces
- Relatively low yield ~50%. About 2 months delayed delivery

Nicola Neri

Flex cables testing

First manual tests with probes

Test setup using adapter cards

<image>

Mauro Citterio Fabrizio Sabatini Marco Petruzzo Biplab Dey Fabrizio Alberti Ennio Viscione

INFN

Flex cable prototype test

 Transmission test up to 330 MHz with high frequency probe and pseudo random signal, TDR measurements, resistance and impedance measurements

39

Quality tests are OK: data-flex design validated

INFN

Nicola Neri

UT status update

Cross-talk measurements

INFN

EDR: feedback from reviewers

- "The work done to study signal propagation in the present flexes was extremely impressive. We were happy that the new design will address many of the impedance discontinuities found. The flex rigid technology used in the present tape restricts the number of potential vendors, and pushes up the price. The decision to use flex technology with a stiffening piece would seem to be appropriate"
- Data flex PRR scheduled for June 2016
 - production starts July 2016
 - production ends August 2017

EDR: feedback from reviewers

- "We were pleased that information on the hybrid was presented, despite its omission from the formal agenda." Hybrid schedule determined by SALT chip. Few months delay.
- Hybrid R&D in 2015 (SALT 8 channel) and in 2016 (SALT 128 channel)
 - EDR Sept 2016
 - PRR Dec 2016
 - Production starts Jan 2017, ends May 2018

Design of the CO₂ cooling system

Simone Coelli Carlo Gesmundo

- Participation to the development of TRACI cooling system in collaboration with CERN
- Crucial contribution to the design and test of the UT CO₂ cooling system

INFN

EDR: feedback from reviewers

- "The UT stave design appears generally correct. The snakepipe geometry allows efficient cooling of the modules, and with the use of two-phase CO₂ as coolant the targeted -5C max temperature on the sensors is well achievable"
- Stave thermal and mechanical simulation, CO₂ tests, Simone Coelli.
 - "According to the studies the ΔT's between cooling pipe and sensor highest temperature are found to be about max 5 C. This is fine as needing to achieve -5C as the max temperature on sensors, and with CO₂ cooling can go to sufficiently low coolant temperatures (-30C)."
- Cooling system production January 2017

Prototype sensor testing

- Test detector modules using 1064 nm laser with 10 µm spot size and radioactive sources
- The setup is ready and will be used as soon as safety procedures will be implemented

Nicola Neri Marco Petruzzo Biplab Dey Dark Box with automatic positioning system

INFN

Test setup in Milano

Sensor test

Sr-90 signal - UT sensor

Hamamatsu sensor

200 μ m thick, 180 μ m pitch, n-in-p Gain ADC = 10 dB S/N ~ 324/37=9 MPV ~ 14.440 e (PDG) 1 ADC ~ 45±5 e

INFN

Silicon sensor telescope

Nicola Neri (System design, simulations) Marco Petruzzo

- Built in Milano a prototype for "artificial retina" for fast track finding. CSN5 experiment
- Used also as fiducial tracking system for UT prototype detector test
 Fabrizio Alberti Andrea Capson Mauro Monti

Simone Coelli (Mechanics) Mauro Monti

UT upgrade project

Project timeline

#	Title		2014			20)15			20	016			20	017			20	18		20	19
		Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2
0	🖬 UT Tracker-TDR-rev2																					
1	UT tracker										-											
2	Technical Design Report																					
3	R&D Phase)											
63	Production Phase		-																		-	
64	Sensor and hybrid production)				
84	SALT FE electronics production and testing																					
90	Instrumented staves		-																		-	
91	stave production infrastructure)								
99	staves production																		ר			
106	Module mounting on staves																					
116	Electronics Production										•							-				
117	Cable production and testing																-					
118	power/data cable production									Г	•											
119	power/data cable testing									-	→)						
120	balcony electronics production and testing									+	•											
129	Superstructure production									-												
130	box production																-	1				
131	module mount production																		•			
132	beampipe interface production																					
133	cooling system production									•												
134	cooling plant assembly																1					
135	DAQ/Monitoring									Ļ	•											
138	Integration in the experiment															-					-	
139	assembly stand development																•					
140	assembly review procedure review															<			-+			
141	metrology (or during installation)															•						
142	system testing															L,						
143	instrumented stave shipping																		-+			
144	stave received at cern																		╘╲┓			
145	instrumented staves tested at cern																			_		
146	UT planes ready for installation																			6	\diamond	

Installation in Q₁ 2019

Project sharing of responsibilities

Sensor and hybrid module (INFN Milano) Syracuse					
SALT	AGH-UST				
Electronics	INFN Milano, Maryland, Syracuse				
DAQ, ECS & TFC	Maryland, Syracuse, Zurich				
Mechanics and Cooling	CERN, Cincinnati, INFN Milano, Syracuse				
Integration and Testing	All Institutes				
Integration in LHCb	CERN, INFN Milano, Syracuse, University of Zurich				
Software	All Institutes				

Stave construction flow

Project cost

Work Package	Cost (kCHF)
Si sensors and hybrids	2700
SALT ASICs	1300
Cables	160
PEPI Electronics	620
DAQ & HV/LV	780
Staves & Hybridisation	510
Infrastructure	130
Cooling	300
Total	6500

Silicon sensors and segmentation

- Rad hard detectors, maximum radiation
 ~40 MRad at the inner region
- sensor operated at T=-5 °C to prevent thermal runaway at the inner region
- sensor dimensions about 10 x 10 cm²
- sensor thickness about 250 µm
- ~180 µm strip pitch. 90 µm pitch at inner region where the particle flux is higher

UT granularity and occupancy

- Occupancies in the UT are ~1% in the inner region and below 0.1% in the outer region with L=2 • 10³³cm⁻²s⁻¹
- Baseline detector has finer granularity near the beampipe. Having a poorer Y granularity in the central sensors, the ghost rate of VELO-UT tracks increases significantly

Material budget

- Multiple scattering dominates the momentum resolution at LHCb⇒ minimize material budget of tracking system
- Current design achieves ~1%
 X₀ per plane
- New design of the beampipe jacket: use of aerogel as thermal insulator. Significant reduction of material budget at η~4.5-5.0.

Material budget vs η for current TT and two different UT stave solutions

