

## Attività di analisi a Pisa

LHCb Italy Meeting - October 13, 2015M.J. Morello (SNS and INFN-Pisa) on behalf of Pisa-Group



## Pisa analysis activities

- CPV in charm decays
  - $A_{CP}$  in  $D^+/D_s^+ \rightarrow \eta(\cdot)\pi^+$  with  $3fb^{-1}$
  - Measurement of  $A_{\Gamma}(D^0 \rightarrow h^+h^-)$  with  $3fb^{-1}$
- Search of rare decays
  - Optimization of the sensitivity for the  $B^0 \rightarrow \mu^+ \mu^-$
- Fully involved in:
  - T&A Group: task on "Investigate tracking asymmetries"
  - B Hadron & Quarkonia WG: S. Stracka is the Trigger Liason.
  - Simulation Group: R. Cenci is in charge as co-convener of the group.



 $D^+/D^+ \rightarrow \eta^{(\prime)}\pi^+$  decays

- Channels still partially known (so far only domain of e<sup>+</sup>e<sup>-</sup> -machines).
  - BFs(D+ channels) ~15-30%.
  - σ(A<sub>CP</sub>) ~1-4%, still far from sensitivity necessary to look for CPV (<1%).
- $O D_{s}^{+} \rightarrow \eta^{(\cdot)} \pi^{+}$ 
  - Aplitude  $\propto V_{ud} V_{cs}^*$  (CF),
  - CPV(SM) negligible.
- $D^+/\rightarrow \eta^{(i)}\pi^+$ 
  - Amplitude  $\propto V_{ud} V_{cd}^*$  (SCS)
  - CPV(SM):
    - $-0.21 \ge 10^{-3}$  (for  $\eta$ ')
    - 0.37 x  $10^{-3}$  (canale  $\eta$ )

[Phys. Rev. D 85, 034036 (2012)] 10/8/15 BF(D<sup>+</sup><sub>s</sub>  $\rightarrow \eta \pi^+$ )= (1.83 ± 0.15)% BF(D<sup>+</sup><sub>s</sub>  $\rightarrow \eta' \pi^+$ )= (3.94± 0.33)%  $v_{ud}$  u  $\pi^+$   $v_{os}$   $\bar{s}$   $\eta, \eta'$ (a)  $D_s^{\pm} \rightarrow \eta^{(\prime)} \pi^{\pm}$  CF decay.

BF(D+  $\rightarrow \eta \pi^+$ ) = (0.353 ± 0.021)% BF(D+  $\rightarrow \eta' \pi^+$ )= (0.467± 0.029)%





# $D^+/D^+_{s} \rightarrow \eta^{(\cdot)}\pi^+$ : current status

available experimental information comes from e+e--machines.

(-0.12 ± 1.12 ± 0.17)% 07, 221801]

(-4.0 ± 3.4 ± 0.3)% 31, 052013]

CLEO:  $(-6.1 \pm 3.0 \pm 0.3)\%$ 

~1k-3k CLEO, ~6k Belle

[PRD 81, 052013]

Signal yelds:

0.08

0.08



Never observed at hadronic collisions.

10/8/15



# $D^+/D^+_{s} \rightarrow \eta^{(\cdot)}\pi^+$ at LHCb in RunI

• No dedicated trigger lines in Run I.

- Used lines conceived for  $D^+ \rightarrow 3h$  decays
- Not optimal for  $D^+/D^+_s \rightarrow \eta^{(\cdot)}\pi^+$ .



- Trigger configuration based on a-priori considerations about "simplicity" and "safety", aiming at the reduction as much as possible of any bias for  $A_{CP}$  measurements.
- At L0, HLT1 no requirements on bachelor  $\pi$  in order to avoid possible detection charge asymmetries;
  - Level0
    - Sample 1: eta\_L0Hadron\_TOS
    - Sample 2: (D\_LOHadron\_TIS || D\_LOPhoton\_TIS || D\_LOPhotonHi\_TIS) ^ !eta\_LOHadron\_TOS
  - HTL1: Hlt1TrackAllL0 requiring to be TOS all  $\eta^{(\cdot)}$  daughters.
  - HLT2 : D candidates TOS wrt Hlt2CharmHadD2HHH.



## $D^+/D^+_{s} \rightarrow \eta^{(\cdot)}\pi^+$ -Analysis in a nutshell

- Stripping originally designed for  $D^+ \rightarrow \pi^0 \pi^+ (\pi^0 \rightarrow e^+ e^- \gamma)$ 
  - StrippingD2PiPi0\_eegammaPiEta(Prime)PromptLine for  $D_{(s)} \rightarrow \eta^{(\cdot)}\pi$  with  $\eta^{(\cdot)} \rightarrow \pi^{+}\pi^{-}\gamma$ .
- Beam spot constrain and  $\eta^{(\cdot)}$  mass constrains using DTF in order to distinguish D and Ds signals from background, especially for the  $\eta$ .
- Offline selection requirements:
  - Basic cuts (large p, E and IP of daughter particles) + fiducial cuts (LHCb-ANA-2011-059).
  - optimized on  $\sigma(A_{CP})$ : η<sup>(·)</sup> mass window,  $\chi^2$  of DTF, PIDK of bachelor pion, γCL photon confidence level.
- Simultaneous maximum likelihood fit to extract signal yields and  $A_{CP}$ .
- Systematics: L0-trigger selection, peaking backgrounds, η<sup>(·)</sup>K and φπ contaminations, fit model, contamination from secondary charm decays.
  10/10/15



## $D^+/D^+_{s} \rightarrow \eta^{(\cdot)}\pi^+$ – Preliminary results



- Much better than current world averages.
- Measurement with  $\eta\pi$  will be finalized soon.
- As a consequence, a dedicated trigger line has been introduced in Run II, with substantially larger efficiency. A further gain of an order of magnitude in yields is expected.
- Details will be soon published in <u>LHCb-ANA-2015-057</u>, to go into WG review.

People: Mocci (Master Thesis), Punzi, Stracka.





## $A_{\Gamma}(D^0 \rightarrow h^+h^-)$ with $3fb^{-1}$

$$A_{\Gamma} \equiv \frac{\hat{\Gamma}(D^0 \to h^+ h^-) - \hat{\Gamma}(\overline{D}{}^0 \to h^+ h^-)}{\hat{\Gamma}(D^0 \to h^+ h^-) + \hat{\Gamma}(\overline{D}{}^0 \to h^+ h^-)} \simeq \eta_{CP} \left[\frac{1}{2}(\mathcal{A}_{\rm m} + \mathcal{A}_{\rm d})y\cos\phi - x\sin\phi\right]$$

where h=K, $\pi$  and  $1/\hat{\Gamma} = \frac{\int t \Gamma(t) dt}{\int \Gamma(t) dt}$  is the effective lifetime

- One the most important measurement in 0 charm physics. A look into the (far) future, already to level of  $< 10^{-3}$ .
- Binned method: 0

10/11/15

- Measure  $A_{raw}$  in bins of D<sup>0</sup> proper decay time, fitting  $\Delta m$  simultaneously for D<sup>0</sup> and antiD<sup>0</sup>.
- extract  $A_{\Gamma}$  from a linear fit of  $A_{raw}(ct)$ .
- Use high statistics mode  $K\pi$  to keep under control (time-dependent) detector-induced charge asymmetries at level of 10<sup>-4</sup>.





## $A_{\Gamma}(D^0 \rightarrow h^+h^-)$ with $3fb^{-1}$

People: Marino (PhD Thesis), Morello, Punzi.

$$A_{\rm raw}(t) = \frac{N(D^0; t_i) - N(\overline{D}^0; t_i)}{N(D^0; t_i) + N(\overline{D}^0; t_i)} = A_0 - A_{\Gamma} \frac{t}{\tau}$$
  
Time-independent term:  
production, detector, etc..  
Only an offset.  
Time-dependent term



Expect  $\sigma_{\text{stat}}(\text{KK}) \sim 3.6 \times 10^{-4}$  and  $\sigma_{\text{stat}}(\pi\pi) \sim 6.1 \times 10^{-4}$ . For more details see next talk by Pietro Marino.

10/11/15



## Soft pion charge asymmetries

Pisa group contributes to the T&A group in studying charge tracking asymmetries for slow particles. From tasks list:

#### Investigate tracking asymmetries (taken)

| Task name                                   | Investigate tracking asymmetries                                                                                                                                                                                                 |  |  |
|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Lead (tools, or other) group                | Tracking and alignment                                                                                                                                                                                                           |  |  |
| Other relevant groups (if any)              | Everybody                                                                                                                                                                                                                        |  |  |
| Task description                            | Tracking asymmetries that do not cancel between magnet up and down are observed in the detector both at low and high momentum. This affects reconstruction of massive objects (i.e. W+) or slow particles in Charm and B decays. |  |  |
| Estimated total<br>effort required<br>(FTE) | 1.0 FTE for 1 year.                                                                                                                                                                                                              |  |  |
| Deadline                                    | before 2014 reprocessing.                                                                                                                                                                                                        |  |  |
| People/groups<br>currently involved         | Pisa                                                                                                                                                                                                                             |  |  |
| Past studies from                           | Patrick Koppenburg.                                                                                                                                                                                                              |  |  |
| New effort required?                        | Yes. Patrick has spotted the problem, but doesn't have time to study it in detail.                                                                                                                                               |  |  |
| Other comments                              | Somebody interested in CPV in Charm would be a perfect candidate to study reconstruction of low momentum tracks, while somebody from EW group should study the high-momentum case.                                               |  |  |



## Soft pion charge asymmetries



R must be the same by construction between MagUp and MagDown (assuming no production asymmetry and the same run "conditions")<sub>5</sub>

Observed differences largely due to the different interaction region (different beam crossing angle).

Improved the precision of cancellation mechanism by reweighting (x-z)- coordinates of the PV. See <u>Pietro's talk</u> at the T&A Group (Oct 10, 2015). 10/13/15



People: Marino, Morello, Punzi, Walsh.



 $B_{(s)}^{0} \rightarrow \mu^{+}\mu^{-}$ 

- In preparation of new measurement in RunII effort focused on the optimization of the sensitivity for the  $B^0 \rightarrow \mu^+ \mu^-$  decay mode.
  - control of systematics in the determination of the peaking background,
  - optimization of the rejection cuts for both the peaking background and the combinatorial background.
- Recent progress (LHCb-INT-2014-047) involves:
  - improved determination of the hadron PID misidentification probabilities,
  - usage of a new PID selection in the rejection of peaking background,
  - introduction of more performant isolation variables in the rejection of the combinatorial background.
- Development of new tools to help improvements in combinatorial background rejection.
  People: M. Rama.

Fruitful collaboration with Frascati people leaders in the  $B^{0}_{(s)} \rightarrow \mu^{+}\mu^{-}$  effort.



## $B \rightarrow \mu \mu$ - IsoBDT

- "New" vs "Old" muon isolation.
  - Used a multivariate classifier (BDT) instead of a cut-based approach.
  - Input variables: Old +  $\Delta \phi$ ,  $\Delta \eta$ , pt, realative charge and PID variable.
- At signal eff.~ $80\% \rightarrow$  backg rej. moves from 80% to 90%.
- When used in the global BDT, improvement still in there (35-40% more background rejection at 80% of signal eff.). Sensitivity to  $B^0_s(B^0)$  improves by a factor 1.05(1.07).
- To further improve performances, studies on VELO and upstream tracks are ongoing (so far used only Long tracks).





 $B^{0}_{(s)} \rightarrow \mu^{+}\mu^{-}$  - New tools

- Development of new tools to further improves the background rejection:
  - A toy event display at ntuple level
    - to compare the properties of signal and background events and look for possible additional discriminating features.
  - A signal-like data sample
    - data-based optimization of global BDT, accounting more precisely for different LHC/detector running conditions, study the isolation properties of signal vs background in data-like environment, etc.
- As a by-product of the signal-like data sample is the "vertexing tool" at the ntuple level.
  - Allowing the test of new ideas (i.e. isolation) without the need of rerunning DaVinci (it needs full DST events).



 $B^{0}_{(s)} \rightarrow \mu^{+}\mu^{-}$  - New tools

#### toy event display

### IsoBDT with VELO and upstream tracks



velo tracks and the second sec ٨. 0.6 sum\_isolation sum isolation to sum isolation new1 sum\_isolation\_new2 sum\_isolation\_newD0 iso\_max\_set15 iso max2 set15 iso ave2 set15 iso\_ave3\_set15 iso\_ave4\_set15 0.2 0.4 0.6 0.8 sig eff ROC\_set11





## Pisa effort in simulation

- Riccardo Cenci in charge as convener of the Simulation from early 2015
- Main activities to be coordinated: Tuning
  - Tuning of generators using data through Professor and Rivet plugins.
  - Tuning of materials and geometry using displaced vertices.
- Other activities:
  - Release and validation of Sim09.
  - Preparation for future releases and migration to Geant4 v10.
  - Focus also on need of larger MC samples for Run2 analyses (particle gun, parametric simulation, multi-thread, etc).



## Conclusions & Perspectives

Pisa activity is variegated and impacts several fields of the experiment:
 – charm physics, rare decays, tracking, simulation and trigger.

- Both  $A_{CP} D^+/D^+_s \rightarrow \eta(\cdot)\pi^+$  and of  $A_{\Gamma}(D^0 \rightarrow h^+h^-)$  with  $3fb^{-1}$  are in good shape and they will go into WG review by the end of the year.
- Achieved a significant progress in facing the challenge of charge asymmetries and magnetic field reversion mechanism.
- Achieved an improved sensitivity (by a factor of 5-7%) in the  $B \rightarrow \mu^+ \mu^-$  analysis, by exploiting better information from muons isolation.



## backup



## Sommario errori sistematici

Incertezze sistematiche sulle asimmetrie CP per il campione a  $\int s = 7$  TeV:

| Systematic effect    | $A_{raw}(D^+ \rightarrow \eta^{*}\pi^+)$ | $A_{raw}(D_{s}^{+} \rightarrow \eta^{*}\pi^{+})$ |
|----------------------|------------------------------------------|--------------------------------------------------|
| Trigger asymmetries  | 0.03%                                    | 0.03%                                            |
| Fit model            | 0.4%                                     | 0.4%                                             |
| K contamination      | 0.1%                                     | 0.2%                                             |
| $\phi$ contamination | 0.2%                                     | 0.0%                                             |
| D from B decays      | 0.03%                                    | 0.06%                                            |
| Production asymmetry | 0.18%                                    | 0.10%                                            |
| Total uncertainty    | 0.5%                                     | 0.5%                                             |

- Incertezze sistematiche più influenti: modello di fit, contaminazione K-φ.
- Per il campione a  $\int s=8$  TeV è ragionevole aspettarsi risultati simili.

10/12/15

## Precisioni LHCb, CLEO, Belle

I valori delle asimmetrie per LHCb sono fissati a zero perché ancora blind.



# BDT 2013 vs BDT with new muon isolation



#### $B_s^0, 3 \, {\rm fb}^{-1}$ $B^0$ , 30 fb<sup>-1</sup> BDT12 & DLL 2013 1.77 4.81 BDT12<sub>iso</sub> & DLL 1.85 1.055.201.07 BDT12<sub>iso</sub> & ProbNN<sub>1</sub> 1.87 1.06 5.231.08BDT12<sub>iso</sub> & ProbNN<sub>2</sub> 1.94 5.371.10 1.11 1.12 BDT12<sub>iso</sub> & ProbNN<sub>3</sub> 2.08 1.18 5.43 BDT12<sub>iso</sub> & ProbNN<sub>4</sub> 2.065.281.16 1.09BDT12<sub>iso</sub> & ProbNN<sub>5</sub> 2.041.15 4.95 1.02BDT12<sub>iso</sub> & ProbNNnop<sub>3</sub> 2.08 1.18 5.42 1.12 BDT12<sub>iso</sub> & ProbNNnop<sub>4</sub> 2.061.16 5.291.09 BDT12<sub>iso</sub> & ProbNNnop<sub>5</sub> 1.96 5.061.051.11

from LHCb-INT-2014-047

#### new muon isolation

new muon isolation + better PID

absolute significance relative change compared to 2013 expectation