Attivita' di analisi a Roma1

Roberta Santacesaria

LHCb-Italia, LNF, 14 ottobre 2015

A.A.Alves* Jr, G.Auriemma, G.Martellotti, R.Santacesaria, C.Satriano

* Apporto fondamentale di Augusto che e' ora al CERN con contratto Cincinnati University ma ancora collabora con noi

Stati esotici di charmonio

Analisi pubblicata:

B⁰→K ψ(2S)π per conferma Z(4430)→ψ(2S)π con analisi model-independent.
<u>http://arxiv.org/abs/1510.01951</u>, sottomesso a PRD

Analisi in corso:

Con approccio analogo alla Z(4430):

- 1- $B^0 \rightarrow K J/\psi \pi$ per ricerca esotici in $J/\psi \pi$
- 2- B⁰→K $\chi_{c1}\pi$ per ricerca esotici in $\chi_{c1}\pi$. Z(4250) e Z(4050) osservate da Belle ma non confermate da BaBar

X(3872):

3- B⁺ \rightarrow K⁺ J/ $\psi \omega$ per confermare X(3872) \rightarrow J/ $\psi \omega$ visto da BaBar ma non da Belle

Z(4430)→ψ(2S)π

• 2014 : pubblicata analisi di ampiezza con evidenza a 18 σ . Analisi model-independent inclusa come conferma "qualitativa"

"Observation of the resonant character of the Z(4430)⁻ state" Phys. Rev. Lett. 112 (2014) 222002

- No assunzioni sulla forma delle risonanze K π e loro interferenze
- le distribuzioni di m_{k π} e cos θ_{K*0} estratte dai dati vengono usate per predire lo spettro $\psi(2S)\pi$ attraverso un toy MC
- Dal confronto delle predizioni coi dati si testa l'ipotesi che il solo sistema K π sia sufficiente per spiegare la struttura dello spettro $\psi(2S)\pi$
- \bullet L'ipotesi e' esclusa a 15 σ

Risultati:sistema K π

Resonance	Mass (MeV/c^2)	$\Gamma (\text{MeV}/c^2)$	J^{p}
$K^{*}(892)^{0}$	$895.81{\pm}0.19$	$47.4{\pm}0.6$	1-
$K^{*}(1410)^{0}$	1414 ± 15	232 ± 21	1-
$K_0^*(1430)^0$	1425 ± 50	270 ± 80	0^{+}
$K_{2}^{*}(1430)^{0}$	$1432.4{\pm}1.3$	109 ± 5	2^{+}
$K^{*}(1680)^{0}$	1717 ± 27	322 ± 110	1-
$K_{3}^{*}(1780)^{0}$	1776 ± 7	159 ± 21	3-
No. 1 P			

Soglia cinematica = 1593 MeV/c^2

Momenti del sistema K π estratti dai dati

6/20

 $m_{K\pi}$ [MeV/c²]

LHCb

m_{Kz} [MeV/c²]

Risultati : spettro $\psi(2S)\pi$

Risultati:spettro $\psi(2S)\pi$

• Selezionando diverse zone di $m_{k\pi}$

Test d'ipotesi: puo' lo spettro $\psi(2S)\pi$ essere spiegato con il sistema K π ?

Generazione di pseudoesperimenti con momenti fino a I_{max} =4, I_{max} =6, I_{max} = $I_{max}(m_{k\pi})$

$$-2\Delta \mathrm{NLL}_{l_{\max}} = -2\log\frac{\mathcal{L}_{l_{\max}}}{\mathcal{L}_{30}} = -2\log\frac{\prod_{i}\mathcal{F}_{l_{\max}}(m^{i}_{\psi(2S)\pi})}{\prod_{i}\mathcal{F}_{30}(m^{i}_{\psi(2S)\pi})}$$

 \mathcal{F}_{lmax} e' la predizione di m_{$\psi(2S)\pi$} basata su m_{k π} e cos θ_{K*0} : Si misura il rapporto della likelihood con \mathcal{F}_{lmax} limitando l_{max} e ponendo l_{max}=30 \rightarrow valore non fisico che descrive "esattamente" lo spettro sperimentale

Ipotesi esclusa : significativita statistica

Ipotesi esclusa : significativita statistica

	S, whole $m_{K\pi}$ spectrum	$S, 1.0 < m_{K\pi} < 1.39 \text{GeV}/c^2$
$l_{\rm max} = 4$	13.3σ	18.2σ
$l_{\rm max} = 6$	8.0σ	14.1σ
$l_{\max}(m_{K\pi})$	15.2σ	17.3σ

B⁰→K J/ ψ π (A.A.,R.S.)

Dati vs predizioni da K π , I_{max}=8

Events/40.000 MeV/c² Events/40.000 MeV/c² 140 meV/c² 100 meV/c² 100 meV/c²

80 E-

60 E

40 E

20 Ē

Dati vs predizioni da K π , $I_{max} = I_{max}(m_{k\pi})$

Accordo non soddisfacente: nuove risonanze? Test di ipotesi in corso (analisi di ampiezza procede in parallelo, idea di pubblicare insieme) 14/20

 $B^0 \rightarrow K \chi_{c1} \pi$

- Belle osserva Z1(4050) e Z2(4250)

No evidenza in BaBar

9328 \pm 133 signal $B^0 \rightarrow K^+ \pi^- \chi_{c1}$ events !

L'analisi e' in fase di ri-ottimizzazione

Tesi magistrale di Francesco Sbordone → http://cds.cern.ch/record/1670686?In=en

 $X(3872) \rightarrow J/\psi \omega$ (A.A.,R.S.)

BaBar misura: BR(B⁺ \rightarrow X(3872)K⁺) x BR(X(3872) \rightarrow J/ $\psi \omega$)= [0.6 \pm 0.2(*stat*) \pm 0.1(*syst*)]x10⁻⁵

Mai confermata da Belle

J/ $\psi \ \omega \rightarrow I=0$, J/ $\psi \ \rho \rightarrow I=1$ Se confermato implica che X(3872) decade, con BR simili, in stati con differenti isospin: due particelle distinte? Massima violazione? PHYSICAL REVIEW D 82, 011101(R) (2010)

Decadimento sottosoglia M(J/ ψ)+M(ω)>M(3872) _{17/20}

$X(3872) \rightarrow J/\psi \omega$

Tesi magistrale di Lorenzo Capriotti → http://cds.cern.ch/record/1988462?ln=en Tesi magistrale di Guido Andreassi → http://cds.cern.ch/record/1986460?ln=en

18/20

$X(3872) \rightarrow J/\psi \omega$

Il risultato sembra promettente 🔨 ma...

Problemi principali:

- Comprensione dello spettro di massa della B: origine della componente larga e asimmetrica sotto il picco della B
- probabilmente dovuta a problemi di ricostruzione del π^0 ma non riproducibile dal MC
- Struttura dello spettro J/ $\psi \omega$, non sembra phase-space come assume BaBar
- Gruppo allargato recentemente a Celeste, Alessia, Stefania Ricciardi

Measurement of inclusive jets and dijets cross section in pp collisions at Vs= 7 TeV (G. Auriemma, C. Satriano)

- inclusive jet cross section measured in p-p collisions 2 < y < 5 and $p_{\tau} > 20$ GeV/c
- ✤ Dijets with M>30 GeV/c²
- ➡ Jets clustering code FastJet v2.5 algorithm anti-kT with R=0.4 (0.5 and 0.6)
- Data 2011 (~1 fb) Stripping 17 Stream HLT1L0Any
- Acceptance, Jet Energy Corrections, etc, from MC10
- Trigger efficiency from data (Streamer Nobias)
- Results compatible (where overlapping) with CMS and ATLAS
- Data 2012 under analysis.

