Attivita' di analisi a Roma1

Roberta Santacesaria LHCb-Italia, LNF, 14 ottobre 2015

A.A.Alves* Jr, G.Auriemma, G.Martellotti, R.Santacesaria, C.Satriano

^{*} Apporto fondamentale di Augusto che e' ora al CERN con contratto Cincinnati University ma ancora collabora con noi

Stati esotici di charmonio

Analisi pubblicata:

• B⁰ \rightarrow K ψ (2S) π per conferma Z(4430) \rightarrow ψ (2S) π con analisi model-independent. http://arxiv.org/abs/1510.01951 , sottomesso a PRD

Analisi in corso:

Con approccio analogo alla Z(4430):

- 1- B⁰ \rightarrow K J/ ψ π per ricerca esotici in J/ ψ π
- 2- B⁰ \rightarrow K $\chi_{c1}\pi$ per ricerca esotici in $\chi_{c1}\pi$. Z(4250) e Z(4050) osservate da Belle ma non confermate da BaBar

X(3872):

3- B⁺ \rightarrow K⁺ J/ ψ ω per confermare X(3872) \rightarrow J/ ψ ω visto da BaBar ma non da Belle

$Z(4430) \rightarrow \psi(2S)\pi$

• 2014 : pubblicata analisi di ampiezza con evidenza a 18σ. Analisi model-independent inclusa come conferma "qualitativa"

"Observation of the resonant character of the Z(4430) state" Phys. Rev. Lett. 112 (2014) 222002

$Z(4430) \rightarrow \psi(2S)\pi$ model-independent

(A.A.,G.M.,R.S.)

Variable	Fit results
M_{B^0}	$5280.83 \pm 0.04 \text{ MeV}/c^2$
σ_{B^0}	$5.77 \pm 0.05 \text{ MeV}/c^2$
Signal yield	$23,801\pm158$
Background yield	757 ± 14

- No assunzioni sulla forma delle risonanze $K\pi$ e loro interferenze
- le distribuzioni di $m_{k\pi}$ e $cos\theta_{K*0}$ estratte dai dati vengono usate per predire lo spettro $\psi(2S)\pi$ attraverso un toy MC
- Dal confronto delle predizioni coi dati si testa l'ipotesi che il solo sistema $K\pi$ sia sufficiente per spiegare la struttura dello spettro $\psi(2S)\pi$
- L'ipotesi e' esclusa a 15σ

Risultati:sistema Kπ

Resonance	Mass (MeV/c^2)	$\Gamma \left(\text{MeV}/c^2 \right)$	J^p
$K^*(892)^0$	895.81 ± 0.19	47.4 ± 0.6	1-
$K^*(1410)^0$	1414 ± 15	232 ± 21	1-
$K_0^*(1430)^0$	1425 ± 50	270 ± 80	0^{+}
$K_2^*(1430)^0$	$1432.4{\pm}1.3$	109 ± 5	2^{+}
$K^*(1680)^0$	1717 ± 27	322 ± 110	1-
$K_3^*(1780)^0$	1776 ± 7	159 ± 21	3-

Soglia cinematica = 1593 MeV/c^2

Momenti del sistema Kπ estratti dai dati

- $\cos\theta_{K*0}$ angolo di elicita' del K *0
- $P_i(\cos\theta_{K*0})$ polinomi di Legendre
- J = s contribuisce fino a $I_{max} = 2s$

Momenti normalizzati $\langle P_i^N \rangle = 2 \langle P_i^U \rangle / N$

Risultati : spettro $\psi(2S)\pi$

```
Predizioni con toy MC del decadimento B^0 \rightarrow K \ \psi(2S)\pi: phase space ......, m(k\pi) = ----, m(k\pi) + \cos\theta_{K*0} = ----
```


Unica assunzione e' massimo spin del sistema $K\pi$

$$l_{\text{max}} = \begin{cases} 2 & m_{K\pi} < 836 \,\text{MeV}/c^2 \\ 3 & 836 \,\text{MeV}/c^2 < m_{K\pi} < 1000 \,\text{MeV}/c^2 \\ 4 & m_{K\pi} > 1000 \,\text{MeV}/c^2. \end{cases}$$
 7/20

Risultati:spettro $\psi(2S)\pi$

• Selezionando diverse zone di $m_{k\pi}$

Test d'ipotesi: puo' lo spettro $\psi(2S)\pi$ essere spiegato con il sistema $K\pi$?

Generazione di pseudoesperimenti con momenti fino a I_{max} =4, I_{max} =6, I_{max} = I_{max} ($m_{k\pi}$)

$$-2\Delta \text{NLL}_{l_{\text{max}}} = -2\log\frac{\mathcal{L}_{l_{\text{max}}}}{\mathcal{L}_{30}} = -2\log\frac{\prod_{i} \mathcal{F}_{l_{\text{max}}}(m_{\psi(2S)\pi}^{i})}{\prod_{i} \mathcal{F}_{30}(m_{\psi(2S)\pi}^{i})}$$

 \mathcal{F}_{lmax} e' la predizione di $m_{\psi(2S)\pi}$ basata su $m_{k\pi}$ e $\cos\theta_{K*0}$: Si misura il rapporto della likelihood con \mathcal{F}_{lmax} limitando l_{max} e ponendo l_{max} =30 \rightarrow valore non fisico che descrive "esattamente" lo spettro sperimentale

Ipotesi esclusa: significativita statistica

Ipotesi esclusa: significativita statistica,

	S , whole $m_{K\pi}$ spectrum	$S, 1.0 < m_{K\pi} < 1.39 \text{GeV}/c^2$
$l_{\text{max}} = 4$	13.3σ	18.2σ
$l_{\text{max}} = 6$	8.0σ	14.1σ
$l_{\max}(m_{K\pi})$	15.2σ	17.3σ

B^O \rightarrow K J/ ψ π (A.A.,R.S.)

Resonance	Mass ($\mathrm{MeV}/\mathit{c}^2$)	Γ (MeV/ c^2)		$BR(\mathrm{K}^{*0^0} \to \mathrm{K}\pi)$
K*(892)	895.81 ± 0.19	$\textbf{47.4} \pm \textbf{0.6}$	1-	$\sim 100\%$
K*(1410)	1414 ± 15	232 ± 21	1^{-}	$(6.6 \pm 1.3)\%$
$K_0^*(1430)$	1425 ± 50	270 ± 80	0+	$(93\pm10)\%$
K ₂ *(1430)	1432.4 ± 1.3	109 ± 5	2^+	$(49.9 \pm 1.2)\%$
${ m B^0} ightarrow { m K^+} \pi^- \psi(2S)$ phase space limit	1593			
K*(1680)	1717 ± 27	$\textbf{322} \pm \textbf{110}$	1^{-}	$(38.7 \pm 2.5)\%$
K ₃ (1780)	1776 \pm 7	159 ± 21	3-	$(18.8 \pm 1.0)\%$
K ₄ (2045)	2045 ± 9	198 ± 30	4+	$(9.9 \pm 1.2)\%$
${ m B^0} ightarrow { m K^+}\pi^- { m J}\!/\!\psi$ phase space limit	2183			

$M_{\mathrm{B}^{0}}$	$5281.215 \pm 0.015 \mathrm{MeV}/c^2$
$\sigma_{ m B}$ o	$7.862 \pm 0.053 \mathrm{MeV/}c^2$
S/B	24.248 ± 0.021
$S/B \ N_s^{ ext{total}} \ N_s^{2\sigma}$	360651.489 ± 632.494
$N_s^{2\sigma}$	331579.375 ± 251.767
χ^2	1.479

Risonanze a spin piu' alto possono contribuire

Dati vs predizioni da $K\pi$, I_{max} =8

Buon accordo

Dati vs predizioni da $K\pi$, $I_{max}=I_{max}(m_{k\pi})$

Accordo non soddisfacente: nuove risonanze? Test di ipotesi in corso (analisi di ampiezza procede in parallelo, idea di pubblicare insieme)

14/20

$B^0 \rightarrow K \chi_{c1} \pi$

- Belle osserva Z1(4050) e Z2(4250)

No evidenza in BaBar

LHCb: B⁰
$$\rightarrow$$
 K $\chi_{c1} \pi$, $\chi_{c1} \rightarrow$ J/ $\psi \gamma$ (A.A.,R.S.)

$$S/B = 3.61 \pm 0.036$$
 @ 2σ

$$M_{\chi_{c1}}^{B} = 5280.9 \pm 0.10$$

$$M_{\chi_{c2}}^{B} = 5234.6 \pm 1.62$$

Shift di $M^{B}_{~\chi c2}$ di -46 MeV/c² dovuto al refit del decay fissando la massa del χ_{c1}

9328 \pm 133 signal ${\rm B^0} \rightarrow {\rm K^+}\pi^-\chi_{\rm c1}$ events !

L'analisi e' in fase di ri-ottimizzazione

$X(3872) \rightarrow J/\psi \omega$

(A.A.,R.S.)

BaBar misura:

BR(B⁺
$$\rightarrow$$
X(3872)K⁺) x BR(X(3872) \rightarrow J/ ψ ω)= [0.6 \pm 0.2(stat) \pm 0.1(syst)]x10⁻⁵

Mai confermata da Belle

J/ $\psi \omega \rightarrow I=0$, J/ $\psi \rho \rightarrow I=1$ Se confermato implica che X(3872) decade, con BR simili, in stati con differenti isospin: due particelle distinte? Massima violazione?

PHYSICAL REVIEW D 82, 011101(R) (2010)

Decadimento sottosoglia $M(J/\psi)+M(\omega)>M(3872)$

$X(3872) \rightarrow J/\psi \omega$

$X(3872) \rightarrow J/\psi \omega$

Il risultato sembra promettente ma...

Problemi principali:

- Comprensione dello spettro di massa della B: origine della componente larga e asimmetrica sotto il picco della B
- probabilmente dovuta a problemi di ricostruzione del π^0 ma non riproducibile dal MC
- Struttura dello spettro $J/\psi\omega$, non sembra phase-space come assume BaBar
- Gruppo allargato recentemente a Celeste, Alessia, Stefania Ricciardi

Measurement of inclusive jets and dijets cross section in pp collisions at $\sqrt{s} = 7$ TeV (G. Auriemma, C. Satriano)

- inclusive jet cross section measured in p-p collisions 2 < y < 5 and $p_T > 20$ GeV/c
- Dijets with M>30 GeV/c²
- Jets clustering code FastJet v2.5 algorithm anti-kT with R=0.4 (0.5 and 0.6)
- ◆ Data 2011 (~1 fb) Stripping 17 Stream HLT1L0Any
- Acceptance, Jet Energy Corrections, etc, from MC10
- Trigger efficiency from data (Streamer Nobias)
- Results compatible (where overlapping) with CMS and ATLAS
- Data 2012 under analysis.

